计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (01): 95-103.
周升儒,陈志刚,邓伊琴
ZHOU Sheng-ru,CHEN Zhi-gang,DENG Yi-qin
摘要: 为了准确地识别及评价网球动作,将计算机视觉与网球运动相关知识相结合,提出了一种基于PoseC3D的网球动作识别及评价方法。首先,使用基于ResNet-50姿态估计模型对网球运动视频进行人体目标检测并提取骨骼关键点;然后,使用在专业网球场采集的视频数据集进行PoseC3D模型训练,使模型能够对网球的子动作进行分类;之后,使用动态时间规整算法对分类的动作进行评价;最后,基于采集的视频数据集进行了大量实验。结果表明,提出的基于PoseC3D的网球动作识别方法对6类网球子动作的分类Top1准确率可以达到90.8%。相较于基于图卷积网络的方法,比如AGCN和ST-GCN,具有更强的泛化能力;提出的基于动态时间规整的评分算法能够在动作分类后实时、准确地给出相应动作的评价分数,从而减少了网球教师的工作强度,有效地提升了网球教学质量。