计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (04): 701-710.
曾祥俊1,叶晓庆2,刘盾1
ZENG Xiang-jun1,YE Xiao-qing2,LIU Dun1
摘要: 在线评论在客户关系管理、产品营销等方面发挥着重要作用,有效利用在线评论来分析用户满意度,对企业改善其服务和产品至关重要。传统的满意度分析方法的变量设计往往依赖专家建议,较少考虑正负属性的不对称影响。为解决这些问题,利用文本细粒度观点挖掘技术,对用户在线评论进行特征挖掘,构建产品服务质量分数,并采用PRCA技术对服务属性的正负影响进行量化,将服务属性投射为Kano属性分类,然后分析不同粒度下不同品牌的客户满意度特点,并给出不同品牌的属性优先顺序。最后,从咖啡评论数据中挖掘出5个关键属性。实验结果表明,不同属性对满意度影响具有不对称效应,且不同粒度下的顾客满意度影响因素具有不同的特点,并给出了相应的精细化企业管理策略。