计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (06): 1123-1133.
黄学雨1,2,罗华3
HUANG Xue-yu1,2,LUO Hua3
摘要: 针对基本蝴蝶优化算法存在的收敛速度慢、求解精度低和易陷入局部最优等问题,提出一种自适应变异蝴蝶优化算法。首先,利用改进帐篷映射结合重心反向学习初始化种群,获得更好的初始解;其次,在位置更新处引入非线性惯性权重,平衡算法的全局搜索与局部搜索能力;最后,在算法运行过程中,根据群体适应度方差以及当前最优解大小来决定是否对当前最优解和最差解进行高斯变异二次寻优,增强算法跳出局部最优的能力。对12个基准测试函数的多种维度仿真实验结果表明,该算法在收敛速度、求解精度和寻优稳定性方面明显优于其他对比算法。