• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (08): 1416-1423.

• 计算机网络与信息安全 • 上一篇    下一篇

基于Transformer和多特征融合的DGA域名检测方法

余子丞,凌捷   

  1. (广东工业大学计算机学院,广东 广州 510006) 
  • 收稿日期:2022-11-28 修回日期:2023-03-17 接受日期:2023-08-25 出版日期:2023-08-25 发布日期:2023-08-18
  • 基金资助:
    广东省重点领域研发计划(2019B010139002);广州市重点领域研发计划(202007010004)

A DGA domain name detection method based on Transformer and multi-feature fusion

YU Zi-cheng,LING Jie   

  1. (School of Computer Science and Technology,Guangdong University of Technology,Guangzhou 510006,China) 
  • Received:2022-11-28 Revised:2023-03-17 Accepted:2023-08-25 Online:2023-08-25 Published:2023-08-18

摘要: 针对域名生成算法生成的恶意域名隐蔽性高,现有方法在恶意域名检测上准确率不高的问题,提出一种基于Transformer和多特征融合的DGA域名检测方法。该方法使用Transformer编码器捕获域名字符的全局信息,通过并行深度卷积神经网络获取不同粒度的长距离上下文特征,同时引入双向长短期记忆网络BiLSTM和自注意力机制Self-Attention结合浅层CNN得到浅层时空特征,融合长距离上下文特征和浅层时空特征进行DGA域名检测。实验结果表明,所提方法在恶意域名检测方法上有更好的性能。相对于CNN、LSTM、L-PCAL和SW-DRN,所提方法在二分类实验中准确率分别提升了1.72%,1.10%,0.75%和0.34%;在多分类实验中准确率分别提升了1.75%,1.29%,0.88%和0.83%。

关键词: 域名生成算法, Transformer模型;深度卷积神经网络;双向长短期记忆网络;自注意力机制

Abstract: To address the problem of high concealment of malicious domain names generated by domain generation algorithms (DGAs) and low accuracy of existing methods in multi-classification of malicious domain names, a DGA domain name detection method based on Transformer and multi-feature fusion is proposed. The method uses the Transformer encoder to capture the global information of domain name characters, and obtains long-distance contextual features at different granularities through a parallel deep convolutional neural network (DCNN). At the same time, BiLSTM  and self-attention mechanism are introduced to combine shallow CNN to obtain shallow spatiotemporal features. Finally, the long-distance context features and shallow spatiotemporal features are combined for domain name detection. The experimental results show that the proposed method has better performance in malicious domain name detection. Compared with CNN, LSTM, L-PCAL, and SW-DRN, the proposed method improves the accuracy by 1.72%, 1.10%, 0.75%, and 0.34% in the binary classification experiment and by 1.75%, 1.29%, 0.88%, and 0.83% in the multi-classification experiment.

Key words: domain generation algorithm (DGA), Transformer model, deep convolutional neural network (DCNN), Bidirectional long short-term memory network, self-attention mechanism ,