• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (08): 1424-1432.

• 计算机网络与信息安全 • 上一篇    下一篇

面向路网的空间众包隐私保护任务分配算法

侯占伟1,李鑫1,王辉2,申自浩1,刘琨2,刘沛骞2   

  1. (1.河南理工大学计算机科学与技术学院,河南 焦作 454000;2.河南理工大学软件学院,河南 焦作 454000)

  • 收稿日期:2022-09-09 修回日期:2023-01-16 接受日期:2023-08-25 出版日期:2023-08-25 发布日期:2023-08-18
  • 基金资助:
    国家自然科学基金(61300216);河南理工大学博士基金(B2022-16,B2020-32);河南省教育厅重点研发项目(20A520014)

A spatial crowdsourcing privacy preservation task allocation algorithm for road network

HOU Zhan-wei1,LI Xin1,WANG Hui2,SHEN Zi-hao1,LIU Kun2,LIU Pei-qian2   

  1. (1.School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000;
    2.School of Software,Henan Polytechnic University,Jiaozuo 454000,China)
  • Received:2022-09-09 Revised:2023-01-16 Accepted:2023-08-25 Online:2023-08-25 Published:2023-08-18

摘要: 隐私保护和任务分配是空间众包的2个核心问题。现有研究大多基于欧氏空间使用地理不可区分性保护位置隐私,但忽略了底层的路网信息,由此带来了众包工人的隐私泄露和效用损失。为了保护工人位置隐私,同时产生较小的效用损失,提出了面向路网的隐私保护批处理任务分配算法。首先,提出了图指数机制优化问题,并设计了一种贪心算法寻找近似最优解,同时引入边缘服务器作为工人的隐私保护代理。然后,将任务分配问题转化为以工人旅行距离为权值的二分图最大流问题,采用KM算法得到最优解。最后,通过实验验证了所提算法在隐私保护程度和效用上均有明显提升。

关键词: 空间众包, 路网, 图指数机制, 任务分配;KM算法

Abstract: Privacy protection and task allocation are two core issues in spatial crowdsourcing. Based on Euclidean space, most of existing researches use geo-indistinguishability (GeoI) to protect location privacy, while ignoring the underlying road network information, which leads to privacy leakage and utility loss of crowdsourcing workers. In order to protect the location privacy of workers and produce small utility loss, a privacy-preserving batch task allocation algorithm framework for road network is proposed. Firstly, the graph-exponential mechanism optimization problem is proposed, and a greedy algorithm is designed to find the approximate optimal solution. At the same time, the edge server is introduced as the privacy protection agent of workers. Then, the task allocation problem is transformed into a bipartite graph maximum flow problem with the weight of workers travel distance, and the optimal solution is obtained by using Kuhn Munkras (KM) algorithm. Finally, the experiment results show that the proposed algorithms significantly improves both privacy protection and utility.

Key words: spatial crowdsourcing, road network, graph-exponential mechanism, task allocation, Kuhn Munkras (KM) algorithm