• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (12): 2175-2185.

• 图形与图像 • 上一篇    下一篇

基于双解码器结构的多尺度注意力特征融合网络的视网膜血管分割#br#

张文豪,瞿绍军   

  1. (湖南师范大学信息科学与工程学院,湖南 长沙 410081)
  • 收稿日期:2023-03-10 修回日期:2023-06-04 接受日期:2023-12-25 出版日期:2023-12-25 发布日期:2023-12-14
  • 基金资助:
    国家自然科学基金(12071126);湖南省教育厅科学研究重点项目(23A0081)

Retinal vessel segmentation based on multi-scale attention feature fusion network with dual-decoder structure

ZHANG Wen-hao,QU Shao-jun   

  1. (College of Information Science and Engineering,Hunan Normal University,Changsha 410081,China)
  • Received:2023-03-10 Revised:2023-06-04 Accepted:2023-12-25 Online:2023-12-25 Published:2023-12-14

摘要: 针对眼底视网膜图像中血管形态不规则、难以分割的问题,提出一种基于双解码器结构的多尺度注意力特征融合网络模型,可以实现视网膜血管精确分割。双解码器分支网络结构能减少信息丢失,编码器中设计多尺度注意力特征融合模块来提取丰富的多尺度特征,结合空间注意力模块加强空间上下文信息提取,提高血管识别能力。利用挤压与激励模块对融合特征进行优化,抑制不相关特征通道,提高模型综合分割能力。在DRIVE和CHASEDB1数据集上的实验结果显示,召回率分别达到0.841 1和0.855 1,相较目前一些先进网络取得了较大进步,最大提升分别达到6.6%和8.25%。

关键词: 医学图像分割, 视网膜血管分割, 双解码器结构, 多尺度特征提取, 空间注意力模块

Abstract: To solve the problem of irregular and difficult segmentation of blood vessels in fundus retinal images, a multi-scale attention feature fusion network model based on a dual-decoder structure is proposed to achieve accurate segmentation of retinal blood vessels. The dual decoder branch network structure can reduce information loss. In the encoder, the multi-scale attention feature fusion module is designed to extract rich multi-scale features and the spatial attention module is combined to enhance the extraction of spatial context information and improve vascular recognition ability. Squeeze-and-excitation module is used to optimize aggregated features, suppress irrelevant feature channels and improve the comprehensive segmentation ability of the model. The experimental results on the DRIVE and CHASEDB1 data sets show that the recall rate can reach 0.841 1 and 0.855 1 respectively, making great progress compared with some advanced networks at present, with the maximum increase of 6.6% and 8.25% respectively.

Key words: medical image segmentation, retinal vessel segmentation, dual-decoder structure, multi-scale feature extraction, spatial attention module