• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (12): 2256-2264.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于子句活跃度和复杂度的多元动态演绎算法及应用

林玲瑜1,曹锋1,易见兵1,方旺盛1,李俊1,吴贯锋2   

  1. (1.江西理工大学信息工程学院,江西 赣州341000;2.西南交通大学数学学院,四川 成都 610031) 
  • 收稿日期:2022-09-09 修回日期:2022-10-20 接受日期:2023-12-25 出版日期:2023-12-25 发布日期:2023-12-14
  • 基金资助:
    (1.School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000;
    2.School of Mathematics,Southwest Jiaotong University,Chengdu 610031,China)

A multi-clause dynamic deduction algorithm based on clause activity and complexity and its application

LIN Ling-yu1,CAO Feng1,YI Jian-bing1,FANG Wang-sheng1,LI Jun1,WU Guan-feng   

  1. (1.School of Information Engineering,Jiangxi University of Science and Technology,Ganzhou 341000;
    2.School of Mathematics,Southwest Jiaotong University,Chengdu 610031,China)

  • Received:2022-09-09 Revised:2022-10-20 Accepted:2023-12-25 Online:2023-12-25 Published:2023-12-14

摘要: 一阶逻辑自动定理证明是知识表示与自动推理领域重要的研究内容,如何有效选取子句参与演绎是提升自动推理能力和效率的研究热点。基于多元动态演绎良好的演绎特性,通过分析子句的变元项性质和函数项结构,提出了一种子句活跃度和复杂度的度量与计算方法,能很好地对不同项结构的子句进行有效评估;基于该子句评估方法,提出了一种子句充分协同演绎的多元动态演绎算法,能有效优化多元演绎搜索路径。将该多元动态演绎算法应用于国际顶尖证明器Eprover 2.6中,以2021年国际自动推理FOF组竞赛例为测试对象,在标准的300 s测试时间内,加入了多元动态演绎算法的Eprover 2.6相比原始Eprover 2.6多证明定理4个,在证明定理总数相同的条件下,平均证明时间减少了1.12 s;能证明Eprover 2.6未证明定理16个,占未证明定理总数的15.1%。实验结果表明,该多元动态演绎算法是一种有效的推理方法,能在一定程度上提升自动定理的证明能力和时间效率。

关键词: 一阶逻辑, 定理证明, 自动推理, 多元动态演绎, 子句评估

Abstract: First-order logic automated theorem proving is an important research content in the fields of knowledge representation and automated reasoning. How to effectively select clauses to participate in deduction is a research hotspot to improve the capability and efficiency of automated reasoning. Based on the good de-duction characteristics of multi-clause dynamic deduction, this paper proposes a measure and calculation method of clause activity and complexity by analyzing the properties of the variable terms and the structure of function terms of clauses, which can effectively evaluate clauses with different term structures. Based on the clause evaluation method, a multi-clause dynamic deduction algorithm with fully synergized deduction of clauses is proposed, which can effectively optimize the multi-clause deduction search path. The multi-clause dynamic deduction algorithm is applied to the international top prover Eprover 2.6, and the 2021 international automated reasoning competition problems (FOF group) is used as the test object. Within the standard 300 seconds, Eprover 2.6 with the proposed multi-clause dynamic deduction algorithm proven four more theorems than the original Eprover 2.6, and the average proof time is decreases by 1.12 seconds under the condition of proving the same number of theorems as Eprover 2.6. In addition, it can prove 16 unproven theorems of Eprover 2.6, accounting for 15.1% of the total unproven theorems. The experimental results show that the proposed multi-clause dynamic deduction algorithm is an effective inference method, which can improve the capability and time efficiency of automated reasoning to a certain extent. 


Key words: first-order logic, theorem proving, automated reasoning, multi-clause dynamic deduction, clause evaluation

中图分类号: