• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2023, Vol. 45 ›› Issue (12): 2265-2273.

• 人工智能与数据挖掘 • 上一篇    下一篇

多尺度深度特征融合的个人信用风险预测

陈巩,李占利,朱莉   

  1. (西安科技大学计算机科学与技术学院,陕西 西安 710699)
  • 收稿日期:2022-09-23 修回日期:2022-11-04 接受日期:2023-12-25 出版日期:2023-12-25 发布日期:2023-12-14
  • 基金资助:
    国家重点研发计划(2019YFB1405000)

Personal credit risk prediction with multi-scale deep feature fusion

CHEN Gong,LI Zhan-li,ZHU Li   

  1. (College of Computer Science & Technology,Xi’an University of Science and Technology,Xi’an 710699,China)
  • Received:2022-09-23 Revised:2022-11-04 Accepted:2023-12-25 Online:2023-12-25 Published:2023-12-14

摘要: 随着中国信贷业务的发展,贷款的违约风险评估已成为一项至关重要的任务。由于金融信用数据特征较多,而不同的特征之间可能存在复杂的内在联系。传统机器学习方法与集成学习方法的有效性依赖于特征的选择,忽略了数据的内在联系,而且特征选择也会造成信息丢失。针对以上问题,提出了一种多尺度深度特征融合的特征提取器。首先,对一维数据进行多尺度卷积,充分地提取特征之间的内在联系,并进行注意力融合,以获取更为关键的特征。然后,利用集成学习XGBoost分类器对深层次抽象特征进行分类,最终获得预测结果。在真实数据集上进行评估的实验结果表明,多尺度深度特征融合方式能够更好地预测个人信用风险,与传统机器学习方法和XGBoost模型相比,其AUC与KS值均有所提高。

关键词: 信用风险预测, 深度特征提取, 注意力融合, XGBoost

Abstract: With the development of credit business in China, assessing the default risk of each loan has become a crucial task. Due to the complex internal relationships among different features in financial credit data, the effectiveness of traditional machine learning methods and ensemble learning methods relies on feature selection, while ignoring the internal relationships of data, and feature selection may also cause data loss. To solve the above problems, a feature extractor based on multi-scale deep feature fusion is proposed.  Firstly, multi-scale convolution is applied to one-dimensional data to fully extract the internal relationships between features and perform attention fusion to obtain more critical features. Then, an ensemble learning XGBoost classifier is used to classify deep abstracted features and obtain the prediction results. Experimental results show that the multi-scale deep feature fusion approach can better predict personal credit risk  under the real data set. The values  of AUC and KS are both increased, in comparison to the XGBoost model and traditional machine learning methods.

Key words: credit risk prediction, deep feature extraction, attention fusion, XGBoost