• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (03): 535-544.

• 人工智能与数据挖掘 • 上一篇    下一篇

可靠响应表示增强的知识追踪方法

赵琰1,马慧芳1,王文涛1,童海斌1,贺相春2   

  1. (1.西北师范大学计算机科学与工程学院,甘肃 兰州 730070;2.西北师范大学教育技术学院,甘肃 兰州 730070)
  • 收稿日期:2022-10-14 修回日期:2022-11-28 接受日期:2024-03-25 出版日期:2024-03-25 发布日期:2024-03-18
  • 基金资助:
    国家自然科学基金(62167007,61762078,61363058);西北师范大学青年教师能力提升计划(NWNU-LKQN2019-2)

A reliable response representation enhanced knowledge tracing method

ZHAO Yan1,MA Hui-fang1,WANG Wen-tao1,TONG Hai-bin1,HE Xiang-chun2   

  1. (1.College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070;
    2.College of Educational Technology,Northwest Normal University,Lanzhou 730070,China)
  • Received:2022-10-14 Revised:2022-11-28 Accepted:2024-03-25 Online:2024-03-25 Published:2024-03-18

摘要: 知识追踪是教育数据挖掘领域中的一项关键任务,旨在建模学生随时间不断变化的知识状态,以推断学生对知识点的掌握程度。然而,现有知识追踪方法大多忽略了基于学生-习题-知识点关系构造的学生-知识点空间的不可靠性和高维稀疏性,并且未结合学生在习题上的作答情况生成习题的可靠响应表示。针对上述问题,提出可靠响应表示增强的知识追踪方法。具体地,首先根据学生的作答记录细粒度地划分学生-习题空间,并基于习题-知识点空间得到不同划分下的学生-知识点空间;其次,从学生-知识点空间的相对可靠性和绝对可靠性2方面获得学生-知识点空间的可靠性,并采用维数约减方法得到可靠且低维的学生-知识点空间;再次,结合学生在习题上的作答情况和习题表示方法得到习题在2种作答下的可靠响应表示;最后,利用长短期记忆网络和得到的可靠响应表示评估学生在不同时刻的知识状态。在4个真实数据集上验证了本文方法的有效性和可解释性。

关键词: 知识追踪, 教育数据挖掘, 可靠响应表示, 长短期记忆网络

Abstract: Knowledge Tracing (KT) is a key task in educational data mining, aiming at modeling students changing knowledge states over time to infer students proficiency on concepts. However, most of existing knowledge tracing methods ignore the reliability and high-dimensional sparsity of the student-concept space based on the student-exercise-concept relationship, and do not combine the students response to the exercise to generate a reliable response representation. To address the above issues, a reliable response representation enhanced knowledge tracing method is proposed. Specifically, firstly, the student-exercise space is divided into fine-grained student-exercise spaces based on the student’s response records, and different student-concept spaces are obtained based on the exercise- concept space; secondly, the reliability of the student-concept space is obtained from both the relative reliability and absolute reliability of the student-concept space, and a reliable and low-dimensional student-concept space is obtained using dimensionality reduction methods; thirdly, the reliable response representation of the exercise is obtained by combining the students response to the exercise and the exercise representation method under two response conditions; finally, the students knowledge state at different timesteps is evaluated using a long short-term memory network and the obtained reliable response representation. Experimental results on four real datasets demonstrate the effectiveness and interpretability of the proposed method.

Key words: knowledge tracing, educational data mining, reliable response representation, long short-term memory network