• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (05): 776-784.

• 高性能计算 • 上一篇    下一篇

EMRI-Tree:面向多分辨率可视化的层次式数据结构

钟权,陈志广,高蓝光   

  1. (中山大学计算机学院,广东 广州 510006)
  • 收稿日期:2023-10-12 修回日期:2023-11-23 接受日期:2024-05-25 出版日期:2024-05-25 发布日期:2024-05-30
  • 基金资助:
    国家重点研发计划(2021YFB0300103);国家自然科学基金(62272499);广东特支计划(2021TQ06X160)

EMRI-Tree: A hierarchical data structure for multi-resolution visualization

ZHONG Quan,CHEN Zhi-guang,GAO Lan-guang   

  1. (School of Computer Science and Engineering,Sun Yat-Sen University,Guangzhou 510006,China)
  • Received:2023-10-12 Revised:2023-11-23 Accepted:2024-05-25 Online:2024-05-25 Published:2024-05-30

摘要: 大规模科学数据的可视化要求极高的数据传输带宽和大量的内存,实现对可视化数据的高效处理是一个巨大的挑战。为了提高科学可视化的效率,最常见且直接的办法是减少需要处理的数据量。通过设计一种新的数据结构EMRI-Tree以及一种可行且灵活的渲染流程,提出了一种新的大规模数据量可视化方案。该方案的特点可以总结如下:首先,所提出的EMRI-Tree支持对大型3D模型进行高效的数据查询和感兴趣区域(ROI)数据获取,从而显著降低内存占用;其次,EMRI-Tree中不同分辨率级别的数据块以可变长度索引的形式存储在键值(KV)存储系统中,提高了存储的可扩展性和读取的并发性;最后,提出了一种基于射线行走的渐进式渲染预取方案,可以在交互时渲染出更精确的模型。综合上述优化方法,该方案可在内存开销有限的情况下,有效促进大规模高分辨率数据的可视化。通过使用80 GB的合成数据进行了10次模拟读取测试来评估方案效果,实验结果表明,该方案具有 2 000+QPS(每秒查询次数)和内存消耗线性增长的特点,是一种稳健且节省内存的方案。

关键词: 多维索引, 八叉树, 数据稀疏化, 渐进式探索, 大数据可视化

Abstract: Visualizing large-scale scientific data requires high data transmission bandwidth and a large amount of memory. Efficient processing of visualization data poses a significant challenge. To improve the efficiency of scientific visualization, the most common and direct method is to reduce the amount of data that needs to be processed. A novel visualization scheme for large-scale volumes of data is proposed by designing a new data structure called EMRI-Tree as well as a flexible rendering workflow. The characteristics of our scheme can be summarized as follows. Firstly, the proposed EMRI-Tree supports memory-efficient data queries and ROI-data (ROI, region of interest) fetching on large 3D models, thus reducing the memory footprint significantly. Secondly, data blocks at different resolution levels in the EMRI-Tree are stored in a key-value (KV) storage system with variable-length indices, which improves the scalability of storage and the concurrency of reading. Lastly, a prefetching scheme is proposed, which supports progressive rendering based on ray marching to render a more accurate model as  interact. By combining the above optimizations, the proposed scheme facilitates the visualization of large volumes of high-resolution data with limited memory overhead. Evaluating the approach by using 80 GB of synthetic data in 10 simulated read tests. The experimental results demonstrate that the  scheme has the characteristics of 2 000+ QPS (queries per second) and linear growth in memory consumption, making it a robust and memory-efficient solution.  

Key words: multidimensional Indexing, octree, data-thinning, progressive exploration, large data visualization