• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (06): 1112-1120.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于情感增强和语义依存的金融隐式情感分析模型

张玉莹1,2,朱广丽1,2,谈光璞1,2   

  1. (1.安徽理工大学计算机科学与工程学院,安徽 淮南 232001;2.合肥综合性国家科学中心人工智能研究院,安徽 合肥 230088)

  • 收稿日期:2023-09-04 修回日期:2023-10-27 接受日期:2024-06-25 出版日期:2024-06-25 发布日期:2024-06-18
  • 基金资助:
    国家自然科学基金(62076006);安徽省高校协同创新项目(GXXT-2021-008)

A financial implicit sentiment analysis model based on sentiment enhancement and semantic dependency

ZHANG Yu-ying1,2,ZHU Guang-li1,2,TAN Guang-pu1,2   

  1. (1.School of Computer Science and Engineering,Anhui University of Science and Technology,Huainan 232001;
    2.Institute of Artificial Intelligence Research,Hefei Comprehensive National Science Center,Hefei 230088,China)
  • Received:2023-09-04 Revised:2023-10-27 Accepted:2024-06-25 Online:2024-06-25 Published:2024-06-18

摘要: 金融情感分析是一种判断金融文本的情感倾向性的技术,广泛应用于舆情分析和监管协调等方面。由于金融领域文本中包含隐式情感信息,难以根据情感特征直接判定情感极性。针对这一问题,提出一种基于情感增强和语义依存的金融隐式情感分析模型(FSED),以期提高分类的准确率。首先,采用FinBERT生成词向量,并输入到Bi-GRU提取上下文语义信息,通过嵌入积极和消极情感词向量构建两极注意力机制,用于分别提取2种语境下的情感特征向量;然后,根据文本的语义依存图建立依存关系和关系类型矩阵,结合2种矩阵和top-k策略构建选择注意力矩阵,再输入到图卷积网络来提取文本的语义依存特征;最后,融合情感增强和语义依存的特征,并使用平均池化和最大池化层对特征进行压缩,经全连接层和Softmax获得分类结果。实验结果表明,相较于A-GCN,FSED可以提升金融领域隐式情感分析的准确率。


关键词: 金融隐式情感分析, FinBERT, 两极注意力机制, 语义依存图, 选择注意力矩阵

Abstract: Financial sentiment analysis is a technology to judge the sentiment orientation of financial texts, which is widely used in public opinion analysis and regulatory coordination. Because financial texts contain implicit sentiment information, it is difficult to directly determine the sentiment polarity according to sentiment features. To address this problem, a financial implicit sentiment analysis model based on sentiment enhancement and semantic dependency (FSED) is proposed to improve the accuracy of classification. Firstly, FinBERT is used to generate word vectors, which are then input into Bi-GRU to extract contextual semantic information. A dual-polarity attention mechanism is constructed by embedding positive and negative sentiment word vectors to extract sentiment feature vectors in two contexts. Then, based on semantic dependency graph of the text, dependency relationships and relationship type matrix are established. By combining these two matrices with the top-k strategy, a selection attention matrix is constructed. This matrix is then input into the graph convolutional network to extract semantic dependency features of the text. Finally, the features from sentiment enhancement and semantic dependency are fused, and compressed using average pooling and max pooling layers. After that, the features are input into fully connected layers and Softmax to obtain the classification results. Experimental results show that compared with A-GCN, FSED can improve the accuracy of implicit sentiment analysis in the financial field.

Key words: financial implicit sentiment analysis, FinBERT, dual-polarity attention mechanism, semantic dependency graph, selection attention matrix