计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (07): 1321-1330.
• 人工智能与数据挖掘 • 上一篇
王钦晨1,段利国1,2,王君山3,张昊妍1,郜浩1
WANG Qin-chen1,DUAN Li-guo1,2,WANG Jun-shan3,ZHANG Hao-yan1,GAO Hao1
摘要: 短文本语义匹配是自然语言处理领域中的一个核心问题,可广泛应用于自动问答、搜索引擎等领域。过去的工作大多只考虑文本之间的相似部分,忽略了文本之间的差异部分,从而使模型无法充分利用到决定文本之间是否匹配的关键信息。针对上述问题,提出一种基于BERT字句向量与差异注意力的短文本语义匹配策略,利用BERT对句子对进行向量化表示,使用BiLSTM并引入多头差异注意力机制获取当前字向量与文本全局语义信息之间表征意图差异的注意力权重,结合一维卷积神经网络对句子对的语义特征向量进行降维,最后拼接字句向量并送入全连接层计算出2个句子之间的语义匹配度。通过在LCQMC和BQ Corpus数据集上的实验表明,该策略可以有效提取文本语义差异信息,从而使模型表现出更好的效果。