• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (08): 1414-1424.

• 计算机网络与信息安全 • 上一篇    下一篇

区域敏感的群智感知隐私保护任务分配机制

王永军1,刘瀚阳1,王辉2,申自浩1,刘琨2,刘沛骞2   

  1. (1.河南理工大学计算机科学与技术学院,河南 焦作 454000;2.河南理工大学软件学院,河南 焦作 454000)

  • 收稿日期:2023-04-07 修回日期:2023-11-22 接受日期:2024-08-25 出版日期:2024-08-25 发布日期:2024-09-02
  • 基金资助:
    国家自然科学基金(61300216);河南省高等学校重点科研项目(23A520033);河南理工大学博士基金(B2020-32,B2022-16)

A privacy-preserving region-sensitive crowdsensing task allocation mechanism

WANG Yong-jun1,LIU Han-yang1,WANG Hui2,SHEN Zi-hao1,LIU Kun2,LIU Pei-qian2   

  1. (1.School of Computer Science and Technology,Henan Polytechnic University,Jiaozuo 454000;
    2.School of Software,Henan Polytechnic University,Jiaozuo 454000,China)
  • Received:2023-04-07 Revised:2023-11-22 Accepted:2024-08-25 Online:2024-08-25 Published:2024-09-02

摘要: 为解决现有移动群智感知任务分配机制对地理区域不敏感造成的效率与隐私问题,设计了一种基于区域热度的任务分配机制(HTPM)。该机制通过对历史数据的分析实现任务个性化发布,提高工作者申请成功率,减少位置隐私暴露次数。首先,基于Geohash算法的自适应网格划分算法(G-AGM)通过对历史数据分析完成对任务区域的划分;其次,HTPM依据划分结果赋予任务位置相对应的任务匹配前缀,并根据招聘结束时间动态更新任务匹配前缀完成任务发布;最后,使用概率代价最小胜者选择机制(LPC-WSM)完成胜者的选取。基于墨西哥城和基多出租车数据集的仿真实验表明,使用HTPM机制的人均申请次数降低30.3%,可以达到保证位置隐私保护强度、提高任务分配效率的目的。

关键词: 移动群智感知, 任务分配, 位置隐私保护, 差分隐私, Geohash

Abstract: To address the efficiency and privacy issues caused by the geographical insensitivity of existing mobile crowdsensing task allocation mechanisms, a task allocation mechanism based on regional heat (HTPM) is designed. This mechanism realizes personalized task publishing through the analysis of historical data, improving the success rate of worker applications and reducing the number of location privacy exposures. Firstly, an adaptive grid partitioning algorithm based on the Geohash algorithm (GAGM) is used to divide the task area based on historical data analysis. Then, HTPM assigns task matching prefixes corresponding to the task locations based on the division results, and dynamically updates the task matching prefixes based on the recruitment end time to complete task publishing. Finally, the least probable cost winner selection mechanism (LPC-WSM) is adopted to select winners. Simulation experiments based on the Kaggle taxi route dataset show that the average number of applications per person using the HTPM mechanism is reduced by 30.3%, achieving the goal of ensuring location privacy protection strength and improving task allocation efficiency.

Key words: mobile crowdsensing, task assignment, location privacy protection, differential privacy, Geohash