计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (08): 1473-1481.
刘晓华1,徐茹枝1,杨成月2
LIU Xiao-hua1,XU Ru-zhi1,YANG Cheng-yue2#br#
摘要: 为解决中文字形上存在差异以及中文词语边界模糊的问题,提出了一种多特征融合嵌入的中文命名实体识别模型。在提取语义特征的基础上,基于卷积神经网络和多头自注意力机制捕获字形特征,并参考词语向量嵌入表获取词语特征,同时利用双向长短期记忆神经网络学习长距离的上下文表示,最后结合条件随机场学习句子序列标签中的约束条件,实现中文命名实体识别。在Resume、Weibo和People Daily数据集上的F1值分别达到了96.66%,70.84%和96.15%,证明提出的模型有效地提高了中文命名实体识别任务的性能。