• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (09): 1675-1684.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于元学习的图神经网络冷启动推荐

吴斯琦,赵清华,于雨晨   

  1. (太原理工大学电子信息与光电工程学院,山西 晋中 030619)

  • 收稿日期:2023-05-25 修回日期:2023-10-24 接受日期:2024-09-25 出版日期:2024-09-25 发布日期:2024-09-23
  • 基金资助:
    国家自然科学基金(61972274)

Meta-learning based graph neural network cold start recommendation

WU Si-qi,ZHAO Qing-hua,YU Yu-chen   

  1. (College of Electronic Information and Optical Engineering,Taiyuan University of Technology,Jinzhong 030619,China)
  • Received:2023-05-25 Revised:2023-10-24 Accepted:2024-09-25 Online:2024-09-25 Published:2024-09-23

摘要: 为解决推荐过程中冷启动问题对新用户或新项目场景性能的限制,提出了一种基于元学习的图神经网络冷启动推荐模型MetaNGCF,以提高推荐的准确性和多样性。首先,提出具有自适应的感知元学习结构来构建用户与项目交互图和神经图混合的模型,将用户行为与项目知识统一表达,融合自适应加权损失策略来实时校正元学习路径,以避免噪声任务对模型造成的损害;其次,运用聚类算法将高维特征空间转化为低维低秩特征空间,并利用用户偏好学习任务聚合层梯度对协作信号进行编码,自动归纳出用户与项目之间的高阶连通性,进而捕捉NGCF通用知识语义;最后,与现有的MetaHIN算法进行对比验证,实验结果表明MetaNGCF在Recall@20和NDCG@20上具有更佳的性能。

关键词: 元学习, 冷启动推荐, 协同过滤, 图神经网络

Abstract: In order to overcome the limitation of the cold start problem in the recommendation process on the performance of new users or new project scenarios, a meta-learning based graph neural network cold start recommendation model, namely MetaNGCF, is proposed to improve the accuracy and diversity of user-to-recommendation. Firstly, a perceptual meta-learning structure with adaptive properties is proposed to construct a model with a hybrid user-project interaction graph and neural graph, which expresses user behavior and project knowledge in a unified way. This structure incorporates an adaptive weighted loss strategy to correct the meta-learning paths in real time, in order to avoid the damage caused by noisy tasks on the model. Secondly, a clustering algorithm is applied to transform the high-dimensional feature space into a low-dimensional low-rank feature space. User preference learning is utilized to task aggregation layer gradient to encode the collaborative signals and automatically gene- ralize the higher-rank connectivity between users and projects, which in turn captures the NGCF general knowledge semantics. Finally, the results are validated in comparison with existing MetaHIN algorithm, and the results show that MetaNGCF has better performance on Recall@20 and NDCG@20.

Key words: meta-learning, cold start recommendation, collaborative filtering, graph neural network