• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (11): 1997-2006.

• 计算机网络与信息安全 • 上一篇    下一篇

参与式感知设备多维数据的个性化差分隐私保护方案

王天阳,李晓会,陈洪洋   

  1. (辽宁工业大学电子与信息工程学院,辽宁 锦州 121001)
  • 收稿日期:2023-09-14 修回日期:2023-12-20 接受日期:2024-11-25 出版日期:2024-11-25 发布日期:2024-11-27
  • 基金资助:
    国家自然科学基金青年基金(61802161);辽宁省应用基础研究计划(2022JH2/101300278);辽宁工业大学研究生教育改革创新项目(YJG2023013)

A personalized differential privacy protection scheme for multidimensional data of participatory sensing devices

WANG Tian-yang,LI Xiao-hui,CHEN Hong-yang   

  1. (School of Electronics & Information Engineering,Liaoning University of Technology,Jinzhou 121001,China)
  • Received:2023-09-14 Revised:2023-12-20 Accepted:2024-11-25 Online:2024-11-25 Published:2024-11-27

摘要: 随着参与式感知PS技术的兴起,个人设备参与数据采集的规模和多样性不断增加,涌现了大量的多维数值型敏感数据,使隐私泄露风险变得更加严峻。为了解决这一问题,提出了一种参与式感知设备多维数值型数据的个性化差分隐私保护方案。该方案通过设计在一定范围内的个性化隐私预算分配方案,并优化DPM机制的采样维数,实现了最小化平均方差。在此基础上,设计了一种个性化的多维分段机制PDPM,提高了数据的可用性并使扰动后的均方误差更小。最后,在2个真实数据集上进行了实验,验证了所提方案在保护用户隐私的同时,显著降低了数值型数据的均方误差。因此,所提的方案在隐私保护和数据可用性之间提供了更好的平衡。

关键词: 参与式感知, 本地差分隐私, 个性化分段机制, 多维数值型数据, 隐私保护

Abstract: With the rise of Participatory Sensing technology, the scale and diversity of personal devices participating in data collection have continued to increase, leading to the emergence of a vast amount of multi dimensional numerical sensitive data, which has exacerbated the risk of privacy leakage. To address this issue, a personalized differential privacy protection scheme for multi dimensional numerical data from participatory sensing devices is proposed. This scheme achieves minimization of the mean squared error by designing a personalized privacy budget allocation scheme within a certain range and optimizing the sampling dimension of DPM (differential privacy mechanism). Based on this, PDPM (personalized dimensional partition mechanism) is designed to improve data availability and reduce the mean squared error after perturbation. Finally, experiments conducted on two real-world datasets verify that the proposed method significantly reduces the mean squared error of numerical data while protecting user privacy. Therefore, the proposed scheme provides a better balance between privacy protection and data availability.

Key words: participatory sensing, local differential privacy, personalized segmentation mechanism, multidimensional numerical data, privacy protection