• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2024, Vol. 46 ›› Issue (11): 2007-2016.

• 图形与图像 • 上一篇    下一篇

基于Gamma分布贝叶斯RCS估计的多目标跟踪算法

李波1,王健2,李佳瑜1,卢哲俊1   

  1. (1.国防科技大学电子科学学院,湖南 长沙 410073;2.国防科技大学计算机学院,湖南 长沙 410073)
  • 收稿日期:2023-12-29 修回日期:2024-03-24 接受日期:2024-11-25 出版日期:2024-11-25 发布日期:2024-11-27
  • 基金资助:
    国家自然科学基金(61921001,61901498,61871384)

A multi-target tracking algorithm based on Gamma distribution Bayesian RCS estimation

LI Bo1,WANG Jian2,LI Jia-yu1,LU Zhe-jun1   

  1. (1.College of Electronic Science and Technology,National University of Defense Technology,Changsha 410073;
    2.College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
  • Received:2023-12-29 Revised:2024-03-24 Accepted:2024-11-25 Online:2024-11-25 Published:2024-11-27

摘要: 针对密集目标场景下的多目标跟踪算法易出现航迹混批的问题,考虑引入RCS信息辅助跟踪,提出了一种基于Gamma分布的贝叶斯RCS估计的多目标跟踪算法。首先,提出目标RCS状态及量测滤波过程,使用非平稳自回归Gamma过程对状态动力学进行建模,在时间更新中实现贝叶斯RCS估计。然后,在PHD滤波器中引入贝叶斯RCS估计,提出了PHDwRCS滤波器,实现对密集目标的跟踪。针对PHD类滤波器无法实时形成航迹、跟踪精度较低的问题,在TPHD滤波器中引入RCS估计,提出了TPHDwRCS滤波器,实现了对密集目标的有效航迹跟踪。通过计算机仿真实验表明,所提算法能够有效实现贝叶斯RCS估计,引入RCS信息后的PHDwRCS滤波器和TPHDwRCS滤波器能够实现对密集目标的精确跟踪,基于GOSPA度量的定量误差性能得到提升,一定程度上缓解了航迹混批问题。

关键词: 多目标跟踪, RCS, 贝叶斯估计, 随机有限集, PHD滤波, TPHD滤波

Abstract: To address the issue of track mixing in multi-target tracking algorithms under dense target scenarios, this paper proposes a multi-target tracking algorithm based on Bayesian radar cross section (RCS) estimation using the Gamma distribution, which incorporates RCS information to assist in tracking. Firstly, the target RCS state and measurement filtering process are presented. A non-stationary autoregressive Gamma process is used to model the state dynamics, enabling Bayesian RCS estimation during the time update. Then, Bayesian RCS estimation is introduced into the probability hypothesis density (PHD) filter, resulting in the PHDwRCS filter, which enables tracking of dense targets. To address the limitations of PHD-based filters in real-time track formation and low tracking accuracy, RCS estimation is further integrated into the Track-before-Detect (TPHD) filter, yielding the TPHDwRCS filter, which achieves effective track tracking of dense targets. Computer simulation experiments demonstrate that the proposed algorithm can effectively implement Bayesian RCS estimation. The PHDwRCS and TPHDwRCS filters incorporating RCS information can accurately track dense targets, result- ing in improved quantitative error performance based on the generalized optimal subpattern assignment (GOSPA) metric. This approach mitigates the problem of track mixing to a certain extent.

Key words: multi-target tracking, RCS, Bayesian estimation, random finite set, PHD filtering, TPHD filtering