• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (01): 160-170.

• 人工智能与数据挖掘 • 上一篇    下一篇

融合交叉序列预测和一致性对比的WiFi人体活动识别

王杨1,2,3,许佳炜2,王傲2,宋世佳2,谢帆2,赵传信2,季一木3   

  1. (1.安徽师范大学皖江学院大数据与人工智能系,安徽 芜湖 241000;2.安徽师范大学计算机与信息学院,安徽 芜湖 241002;
    3.南京邮电大学高性能计算与大数据处理研究所,江苏 南京 210003) 

  • 收稿日期:2024-01-18 修回日期:2024-05-05 接受日期:2025-01-25 出版日期:2025-01-25 发布日期:2025-01-18
  • 基金资助:
    国家重点研发计划(2018AAA010300);国家自然科学基金(61871412);安徽省自然科学基金(KJ2019A0938,KJ2021A1314,KJ2019A0979);安徽高校自然科学重点项目(2022AH052899,KJ2019A0979,KJ2019A0511,2023AH052757);机器视觉检测安徽省重点实验室(KLMVI-2023-HIT-11);安徽省高校学科(专业)拔尖人才学术资助项目(gxbjZD2022147)

WiFi-based human activity recognition using cross-sequence prediction and consistency comparison

WANG Yang1,2,3,XU Jiawei2,WANG Ao2,SONG Shijia2,XIE Fan2,ZHAO Chuanxin2,JI Yimu3   

  1. (1.School of Big Data & Artificial Intelligence,Wanjiang College of Anhui Normal University,Wuhu 241000;
    2.School of Computer and Information,Anhui Normal University,Wuhu 241002;
    3.HPC & Big data Processing Institute,Nanjing University of Posts and Telecommunications,Nanjing 210003,China)
  • Received:2024-01-18 Revised:2024-05-05 Accepted:2025-01-25 Online:2025-01-25 Published:2025-01-18

摘要: 随着IEEE 802.11bf标准的发布,WiFi感知技术已从学术研究走向工业应用。针对现有的基于 WiFi的人体活动检测系统往往依赖于较强假设约束问题,从如何充分利用无标签 CSI样本出发,设计了一种适用于WiFi感知领域的自监督模型CPCC-Fi。模型在对比学习思想的基础上首先使用序列数据增强生成不同视图的无标记CSI样本;然后通过自监督学习获取CSI序列内在表示特征;再通过少量标记样本对模型进行微调,最后即可实现下游人体活动的有效感知和识别。在自采和公开数据集上的相关实验结果表明,与CNN+Linear、CNN+Transformer+Linear和TS-TCC相比,CPCC-Fi模型的各项性能均有所提升。

关键词: 自监督学习, 信道状态信息, 人体活动识别, 表征学习

Abstract: With the release of the IEEE 802.11bf standard, WiFi sensing technology has transitioned from academic research to industrial applications. Addressing the issue that existing WiFi-based human activity detection systems often rely on strong assumption constraints, this paper proposes a self- supervised model, CPCC-Fi, tailored for the field of WiFi sensing, starting from how to fully utilize unlabeled channel state information (CSI) samples. Based on the idea of contrastive learning, the model first employs sequential data augmentation to generate unlabeled CSI samples with different views. Then  it acquires the intrinsic representation features of the CSI sequences through self-supervised learning. After fine-tuning the model with a small number of labeled samples, effective perception and recognition of downstream human activities can be achieved. Relevant experiments conducted on both self-collected and public datasets demonstrate that the CPCC-Fi model outperforms CNN+Linear, CNN+Transformer+Linear, and TS-TCC in terms of performance.

Key words: self-supervised learning, channel state information, human activity recognition, representation learning