• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (01): 171-179.

• 人工智能与数据挖掘 • 上一篇    下一篇

混合策略改进的蜣螂优化算法

高纪元1,刘杰2,陈昌盛1,李伟3,刘影4,杨靖1,5   

  1. (1.贵州大学电气工程学院,贵州 贵阳 550025;2.中国电建集团贵州工程有限公司,贵州 贵阳 550025;
    3.贵州大学农学院,贵州 贵阳 550025;4.贵州电网有限责任公司电网规划研究中心,贵州 贵阳 550001;
    5.贵州省“互联网+”协同智能制造重点实验室,贵州 贵阳 550025)

  • 收稿日期:2024-03-07 修回日期:2024-04-29 接受日期:2025-01-25 出版日期:2025-01-25 发布日期:2025-01-18
  • 基金资助:
    国家自然科学基金(61640014,61963009);贵州省教育厅创新群体(黔教合KY字[2021]012);贵州省科技支撑计划(黔科合支撑[2023]一般411,黔科合支撑[2023]一般412,黔科合支撑[2022]一般017,黔科合支撑[2019]2152);贵州省教育厅工程研究中心(黔教技[2022]040,黔教技[2022]043);中国电建集团科技项目(No.DJ-ZDXM-2020-19,No.DJ-ZDXM-2022-44);贵州省双碳研究院开放课题(DCRE-2023-13)

A hybrid strategy improved dung beetle optimization algorithm

GAO  Jiyuan1,LIU Jie2,CHEN Changsheng1,LI Wei3,LIU Ying4,YANG Jing1,5    

  1. (1.College of Electrical Engineering,Guizhou University,Guiyang 550025;
    2.Power China,Guizhou Engineering Co.,Ltd.,Guiyang 550025;
    3.College of Agriculture,Guizhou University,Guiyang 550025;
    4.Grid Planning and Research Center of Guizhou Power Grid Co.,Ltd.,Guiyang 550001;
    5.Guizhou Provincial Key Laboratory of “Internet+” Collaborative Intelligent Manufacturing,Guiyang 550025,China)
  • Received:2024-03-07 Revised:2024-04-29 Accepted:2025-01-25 Online:2025-01-25 Published:2025-01-18

摘要: 蜣螂优化算法是一种新的全局优化元启发式算法,具有寻优能力强和收敛速度快的特点,但是其也存在容易陷入局部最优和收敛精度低等缺点。为此,提出了一种基于混合策略改进的蜣螂优化HSIDBO算法。首先,采用改进后的Logistic混沌进行种群初始化得到更加均匀分布的种群;其次,采用自适应最优引导策略加快算法的收敛速度,提升局部收缩能力;最后,增加透镜成像学习策略改善蜣螂偷窃环节以增强算法的局部逃逸能力。通过对14个经典测试函数和工程应用问题进行求解测试,表明引入的3种策略能有效提升蜣螂优化算法的性能。

关键词: 蜣螂优化算法, 混沌映射, 最优引导, 透镜成像学习

Abstract: The dung beetle optimizer (DBO) is a novel global optimization meta-heuristic algorithm characterized by its strong optimization capability and fast convergence speed. However, it also has drawbacks such as being prone to local optima and low convergence accuracy. To address these issues, this paper proposes a hybrid strategy improved dung beetle algorithm (HSIDBO). Firstly, an improved Logistic chaos is used for population initialization to obtain a more uniformly distributed population. Secondly, an adaptive optimal guidance strategy is adopted to increase the algorithms convergence speed and local contraction ability. Finally, a lens imaging learning strategy is introduced to improve the dung beetles theft process, thereby enhancing the algorithm's local escape ability. Tests were conducted on 14 classic benchmark functions and engineering application problems. The results demonstrate that the integration of these three strategies can effectively enhance the performance of the dung beetle optimizer.

Key words: dung beetle optimization algorithm, Chaos napping, optimal guidance, lens imaging learning