• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (01): 56-65.

• 高性能计算 • 上一篇    下一篇

基于模糊强化学习的云计算虚拟机调度策略

余世瑞1,姜春茂2   

  1. (1.哈尔滨师范大学计算机科学与信息工程学院,黑龙江 哈尔滨 150025;
    2.福建理工大学计算机科学与数学学院,福建 福州 350118)
  • 收稿日期:2023-07-13 修回日期:2024-02-25 接受日期:2025-01-25 出版日期:2025-01-25 发布日期:2025-01-18
  • 基金资助:
    黑龙江省自然科学基金(LH2020F031)

A cloud computing virtual machine scheduling strategy based on fuzzy reinforcement learning

YU Shirui1,JIANG Chunmao2   

  1. (1.College of Computer Science and Information Engineering,Harbin Normal University,Harbin 150025;
    2.College of Computer Science and Mathematics,Fujian University of Technology,Fuzhou 350118,China)
  • Received:2023-07-13 Revised:2024-02-25 Accepted:2025-01-25 Online:2025-01-25 Published:2025-01-18

摘要: 针对云计算数据中心中,低效的资源管理产生的高能耗问题,提出一种基于模糊的(Q- learning(λ))强化学习算法,通过处理虚拟机放置(VMP)问题来解决云计算数据中心的高能耗开销问题。将当前状态下的虚拟机数量以及物理机利用率作为输入状态传入模糊控制器,并与强化学习(RL)算法相结合来执行对应相关的策略。该算法能够动态地将相关虚拟机分配到所对应的物理服务器上并且能够减少虚拟机迁移次数,优化资源利用率,在满足用户服务级别协议(SLA)的同时降低能源消耗。该算法能够应对工作负载波动的情况,并在满足SLA的期望服务质量(QoS)需求的同时,提供合适的VM部署(初始或重新映射)。实验结果显示,与Q-learning、Q-learning(λ)、Greedy和PSO放置算法相比,基于模糊的Q-learning(λ)算法的能源消耗显著减少且具有更快的收敛速度和一定的实用价值。

关键词: 云计算, 虚拟机放置, 强化学习, 模糊系统

Abstract: Addressing the issue of high energy consumption resulting from inefficient resource management in cloud computing data centers, a fuzzy-based Q-learning(λ) reinforcement learning algorithm is proposed to tackle the high energy expenditure by addressing the virtual machine placement (VMP) problem. This algorithm takes the number of virtual machines in the current state and the utilization rate of physical hosts as input states, which are then fed into a fuzzy controller and combined with a reinforcement learning (RL) algorithm to execute corresponding strategies. This algorithm dynamically allocates relevant virtual machines to their corresponding physical servers, reducing the number of virtual machine migrations, optimizing resource utilization, and lowering energy consumption while satisfying user service level agreements (SLAs). This algorithm  can handle fluctuating workload situations and provide appropriate VM deployment (initial or remap) while meeting the expected quality of service (QoS) requirements of SLAs. Experimental results show that compared to Q-learning, Q-learning(λ), Greedy and PSO placement algorithms, the fuzzy-based Q-learning(λ) algorithm significantly reduces energy consumption and has a faster convergence rate, demonstrating its practical value.

Key words: cloud computing, virtual machine placement, reinforcement learning, fuzzy system