• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (02): 228-237.

• 高性能计算 • 上一篇    下一篇

一种基数为4的高基数SRT立方根算法设计与实现

赵彩虹1,刘梓璇1,2,周建涛1,3,4,5   

  1. (1.内蒙古大学计算机学院,内蒙古 呼和浩特 010021;2.清华大学软件学院,北京 100084;
    3.生态大数据教育部工程研究中心,内蒙古 呼和浩特 010021;
    4.内蒙古自治区云计算与服务软件工程实验室,内蒙古 呼和浩特 010021;
    5.大数据分析技术内蒙古自治区工程实验室,内蒙古 呼和浩特 010021)
  • 收稿日期:2023-12-01 修回日期:2024-03-14 接受日期:2025-02-25 出版日期:2025-02-25 发布日期:2025-02-21
  • 基金资助:
    国家自然科学基金(62162046);内蒙古科技攻关项目(2021GG0155);内蒙古自然科学基金重大项目(2019ZD15);内蒙古自治区关键技术攻关计划课题(2019GG372)

Design and implementation of a high-radix SRT cube root algorithm with radix-4

ZHAO Caihong1,LIU Zixuan1,2,ZHOU Jiantao1,3,4,5   

  1. (1.College of Computer Science,Inner Mongolia University,Hohhot 010021;
    2.School of Software,Tsinghua University,Beijing 100084;
    3.Engineering Research Center of Ecological Big Data,Ministry of Education,Hohhot 010021;
    4.Inner Mongolia Engineering Laboratory for Cloud Computing and Service Software,Hohhot 010021;
    5.Inner Mongolia Engineering Laboratory for Big Data Analysis Technology,Hohhot 010021,China)
  • Received:2023-12-01 Revised:2024-03-14 Accepted:2025-02-25 Online:2025-02-25 Published:2025-02-21

摘要: SRT立方根算法在多媒体、计算机图形学等领域发挥着重要作用。虽然现有算法可通过增加基数以加快计算速度,但仍存在初始化处理缺乏、商位选择表设计复杂及实现困难的问题。研究设计并实现基数为4的SRT立方根算法。首先,提出一种高基数SRT立方根初始化算法,保证后续迭代计算的可执行性;设计基数为4的SRT立方根算法的商位选择表,为商位选择提供必要条件;优化即时转换算法,能够避免转换过程中出现多次进位的情况。其次,基于PyRTL工具改进并实现了上述基数为4的SRT立方根算法,有效缓解了高基数SRT立方根算法困难的问题。最后,与现有基数为2的SRT立方根算法进行对比,以证明该算法的有效性和优越性。

关键词: SRT立方根算法, 高基数, 商位选择表, 硬件算法

Abstract: The SRT cube root algorithm plays a significant role in fields such as multimedia and computer graphics. Although existing algorithms can accelerate computation by increasing the radix, they still face issues such as a lack of initialization processing, complex design of the quotient digit selection table, and implementation difficulties. This paper designs and implements an SRT cube root algorithm with radix-4. Firstly, proposing a high-radix SRT cube root initialization algorithm to ensure the feasibility of subsequent iterative calculations; designing a quotient digit selection table for the radix-4 SRT cube root algorithm to provide necessary conditions for quotient digit selection; optimizing the timely conversion algorithm to avoid multiple carries during the conversion process. Secondly, the above radix-4 SRT cube root algorithm is improved and implemented based on the PyRTL tool, effectively mitigat- ing the implementation challenges of high-radix SRT cube root algorithms. Finally, a comparison with the existing radix-2 SRT cube root algorithm demonstrates the effectiveness and superiority of the proposed algorithm.

Key words: SRT cube root algorithm, high-radix, quotient digit selection table, hardware algorithm