• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (02): 361-369.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于双通道异质超图神经网络的引文推荐方法

李瑞红,李晓红,姚锦,王闪闪   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070)

  • 收稿日期:2023-07-03 修回日期:2024-05-06 接受日期:2025-02-25 出版日期:2025-02-25 发布日期:2025-02-24
  • 基金资助:
    国家自然科学基金(61862058);甘肃省科技计划(20JR5RA518);甘肃省自然科学基金(20JR10RA076);西北师范大学科研项目(NWNU-LKQN2022-03)

A citation recommendation method based on dual-channel heterogeneous hypergraph neural networks

LI Ruihong,LI Xiaohong,YAO Jin,WANG Shanshan   

  1.  (College of Computer Science & Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2023-07-03 Revised:2024-05-06 Accepted:2025-02-25 Online:2025-02-25 Published:2025-02-24

摘要: 针对现有引文推荐方法侧重于使用图结构建模二元关系,对节点类型和交互关系的多元化及多样性表示不足的问题,提出了基于双通道异质超图神经网络的引文推荐方法。首先,构建异质图,利用卷积神经网络和Transformer分别编码异质图中各个节点的局部和全局语义特征,获得异质图通道上关于目标节点的结构表征。其次,设计多种类型的超边,扩展异构数据信息。再次,使用超图编码节点间的交互,并利用超图神经网络捕获超图中潜在的复杂高阶语义关系,获得超图通道上关于目标节点的语义表征。最后,聚合2个通道上的信息,得到目标节点的最终语义表示,并计算目标论文节点与候选论文节点间的相关性,生成引用文献推荐列表。在DBLP和PubMed数据集上的实验结果表明,所提出的方法能有效提升引文推荐的质量,获得较好的推荐结果。

关键词: 引文推荐, 异质图, 超图神经网络, 信息融合

Abstract: Addressing the issue that existing citation recommendation methods primarily focus on modeling binary relationships using graph structures, and lack sufficient representation of the diversity and variety of node types and interaction relationships, a citation recommendation method based on dual-channel heterogeneous hypergraph neural networks is proposed. Firstly, a heterogeneous graph is constructed, convolutional neural networks (CNNs) and Transformers are utilized to encode the local and global semantic features of each node in the heterogeneous graph, respectively, obtaining structural representations of the target node on the heterogeneous graph channel. Secondly, multiple types of hyperedges are designed to expand heterogeneous data information. Thirdly, a hypergraph is used to encode interactions between nodes, and a hypergraph neural network is employed to capture potential complex high-order semantic relationships in the hypergraph, obtaining semantic representations of the target node on the hypergraph channel. Finally, information from the two channels is aggregated to obtain the final semantic representation of the target node. The correlation between the target paper node and candidate paper nodes is calculated to generate a citation recommendation list. Experimental results on the DBLP and PubMed datasets demonstrate that the proposed method can effectively improve the quality of citation recommendations and achieve better recommendation outcomes.


Key words: citation recommendation, heterogeneous graph, hypergraph neural network, information fusion