• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (10): 1877-1889.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于多策略融合的改进黑猩猩优化算法

王燕,王妮娅,毛剑琳,徐志昊,李大焱   

  1. (昆明理工大学信息工程与自动化学院,云南 昆明 650504)
  • 收稿日期:2024-03-07 出版日期:2025-10-25 发布日期:2025-10-29
  • 基金资助:
    国家自然科学基金(62263017);云南省重大科技专项计划(202402AC080005)

Improved chimp optimization algorithm based on multi-strategy integration

WANG Yan,WANG Niya,MAO Jianlin,XU Zhihao,LI Dayan   

  1. (Faculty of Information Engineering and Automation,Kunming University of Science and Technology,Kunming 650504,China)
  • Received:2024-03-07 Online:2025-10-25 Published:2025-10-29

摘要: 黑猩猩优化算法ChOA具有个体多样性丰富和收敛速度快的特点,但是该算法在搜索能力和跳出局部最优上仍有改善的空间。因此,提出一种基于多策略融合的改进黑猩猩优化算法。首先,引入双交叉无限折叠迭代混沌映射对种群进行初始化,以提高初始解质量,有助于算法后续寻优;其次,结合正余弦权重因子和个体最佳跟随策略的混合位置更新机制更新个体位置,提高算法寻优能力和收敛精度;最后,引入柯西高斯变异机制,对当前最优个体进行变异,同时结合贪婪策略选择最佳个体,增强算法跳出局部最优的能力。在数值实验中,使用10个基准函数的Wilcoxon秩和检验对比分析改进算法的寻优性能,结果表明,所提算法寻优性能较对比算法均有所提升,并在三维路径规划问题上进一步验证了算法有效性。

关键词: 黑猩猩优化算法, 双交叉无限折叠迭代混沌映射, 正余弦权重因子, 个体最佳跟随策略, 柯西高斯变异, 路径规划

Abstract: The chimp optimization algorithm (ChOA) is characterized by high population diversity and fast convergence speed. However, there remains room for improvement in its search capability and methods for escaping from local optima. Therefore, this paper proposes an improved chimp optimization algorithm based on multi-strategy fusion. Firstly, a double-cross infinite-fold iterative chaotic map is introduced to initialize the population, enhancing the quality of initial solutions and facilitating subsequent optimization by the algorithm. Subsequently, a hybrid position update mechanism that combines  sinecosine weight factors and an individual best following strategy is employed to update individual positions, thereby improving the algorithm’s optimization capability and convergence accuracy. Finally, a CauchyGaussian variation mechanism is introduced to mutate the current best individual, and a greedy selection strategy is used to select the optimal individual, enhancing the algorithm’s ability to escape local optima. In numerical experiments, the Wilcoxon rank sum test is utilized to comparatively analyze the optimization performance of the improved algorithm using 10 benchmark functions. The results demonstrate that the proposed algorithm exhibits enhanced optimization performance compared to the compared algorithms and further validates its effectiveness in solving 3D path planning problems.

Key words: chimp optimization algorithm(ChOA), 2D sine ICMIC double cross map(2D-SIDCM), sinecosine weight factor, individual best following strategy, CauchyGaussian variation, path planning