• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (11): 1953-1963.

• 计算机网络与信息安全 • 上一篇    下一篇

基于门控特征融合与多尺度卷积的网络流量异常检测

尹春勇,李荣标


  

  1. (南京信息工程大学计算机学院、网络空间安全学院,江苏 南京 210044) 

  • 收稿日期:2024-03-18 修回日期:2024-05-20 出版日期:2025-11-25 发布日期:2025-12-05
  • 基金资助:
    国家自然科学基金(61772282)

Network traffic anomaly detection based on gated fusion and multi-scale convolution

YIN Chunyong,LI Rongbiao   

  1. (School of Computer Science,School of Cyber Science and Engineering,
    Nanjing University of Information Science & Technology,Nanjing 210044,China)
  • Received:2024-03-18 Revised:2024-05-20 Online:2025-11-25 Published:2025-12-05

摘要: 在当前网络流量异常检测领域中普遍存在着模型结构复杂和计算资源需求大等问题,这导致在资源受限的设备上难以完成部署和检测。为此,提出了一种基于门控特征融合与多尺度卷积的网络流量异常检测模型GFMCAD。首先,将主成分分析与聚类方法相结合以降低网络流量数据的复杂度。其次,采用由一维卷积神经网络构成的并行多尺度卷积块与多层长短期记忆网络分别提取网络流量在不同尺度下的空间与时序特征。然后,通过门控特征融合模块将提取到的空间与时序特征进行自适应特征融合。最后,使用残差全连接层与Softmax函数识别异常流量。实验结果显示,GFMCAD在3个基准数据集上分别取得了0.971 6,0.965 8与0.987 5的准确率。实验结果表明,GFMCAD在降低计算资源消耗的同时提升了模型的检测能力。

关键词: 异常检测, 网络流量, 卷积神经网络, 长短期记忆, 深度学习

Abstract: In the current field of network traffic anomaly detection, problems such as complex model structures and high computational resource requirements are widespread, making it difficult to deploy and perform detection on resource-constrained devices. To address these problems, a network traffic anomaly detection model  based on gated feature fusion and multi-scale convolution, named GFMCAD, is proposed. Firstly, principal component analysis is combined with a clustering method to reduce the complexity of network traffic data. Secondly, parallel multi-scale convolution blocks composed of one-dimensional convolutional neural networks and multi-layer long short-term memory networks are used to extract spatial and temporal features of network traffic at different scales, respectively. Then, the extracted spatial and temporal features are adaptively fused through a gated feature fusion module. Finally, residual fully connected layers and the Softmax function are used to identify abnormal traffic. According to the experimental results on three benchmark datasets, GFMCAD achieves accuracies of 0.971 6, 0.965 8, and 0.987 5, respectively. Experimental results show that GFMCAD reduces the consumption of computational resources while improving the detection capability of the model.


Key words: anomaly detection, network traffic, convolutional neural network, long short-term memory, deep learning