• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (12): 2139-2149.

• 计算机网络与信息安全 • 上一篇    下一篇

基于MDS码和NMDS码的(几乎)最优可扩展码构造

李文婷,衡子灵,李晓茹   

  1. (1.长安大学理学院,陕西 西安 710064;2.东南大学移动通信全国重点实验室,江苏 南京 211111)

  • 收稿日期:2024-03-13 修回日期:2024-06-20 出版日期:2025-12-25 发布日期:2026-01-06
  • 基金资助:
    国家自然科学基金(12271059);东南大学移动通信全国重点实验室开放研究基金(2024D10)

Several constructions of (almost) optimally extendable linear codes from MDS codes and NMDS codes

LI Wenting,HENG Ziling,LI Xiaoru   

  1. (1.School of Sciences,Chang’an University,Xi’an 710064;
    2.National Mobile Communications Research Laboratory,Southeast University,Nanjing 211111,China)
  • Received:2024-03-13 Revised:2024-06-20 Online:2025-12-25 Published:2026-01-06

摘要: 在分组密码实现中,侧信道攻击(SCA)和故障注入攻击(FIA)是密码分析十分重要的方法。设C是Fq上生成矩阵为G的线性码,C′是Fq上生成矩阵为G′=[G:Ik]的线性码,其中Ik为k阶单位矩阵。若d(C⊥)=d(C′⊥),则称C为最优可扩展线性码;若d(C⊥)=d(C′⊥)+1,则称C为几乎最优可扩展线性码。最优或几乎最优可扩展码可有效保护存储在寄存器中的敏感数据,使其不受SCA和FIA的影响,从而保护整个算法。通过特殊的生成矩阵构造了1类维数为5的几乎最优可扩展线性码,并求出了其参数和重量计数器。此外,证明了另外4类维数为5以及2类维数为4的NMDS码为最优可扩展线性码。特别地,所构造的(几乎)最优可扩展码的参数与已知(几乎)最优可扩展码的参数不同,在直和掩码设计中有潜在应用价值。

关键词: 线性码, 可扩展码, 重量计数器

Abstract: In the implementation of block ciphers, side channel attacks(SCAs) and fault injection attacks(FIAs) are crucial cryptanalysis methods. Let C  be a linear code over Fq  with a generator matrix G, and C′  be a linear code over Fq  with a generator matrix G′=[G:Ik], where Ik   is the identity matrix of order  k. If  d(C′⊥)=d(C⊥), then C  is said to be an optimally extendable linear code; if  d(C′⊥)= d(C⊥)-1, then C  is said to be an almost optimally extendable linear code. Optimally or almost optimally extendable linear codes effectively protect not only sensitive data stored in registers from SCAs and FIAs but also the entire algorithm. A class of almost optimally extendable linear codes with dimension 5 is constructed by special generator matrices, and its parameters and weight enumerators are obtained. In addition, it is proved that another 4 classes of NMDS (near maximum distance separable) codes with dimension 5 and 2 classes of NMDS codes with dimension 4 are optimally extendable linear codes. In particular, the parameters of the (almost) optimally extendable linear codes are different from those of known (almost) optimally extendable linear codes, and the  constructed codes have potential applications in direct sum masking.


Key words: linear code, extendable code, weight enumerator