• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (4): 667-676.

• 计算机网络与信息安全 • 上一篇    下一篇

具有网络结构适应性的社交网络影响最大化方法

汪晓洁,侯小静,徐春,张蕾   

  1. (新疆财经大学信息管理学院,新疆 乌鲁木齐 830012)
  • 收稿日期:2023-11-24 修回日期:2024-04-06 出版日期:2025-04-25 发布日期:2025-04-17
  • 基金资助:
    国家自然科学基金(62266041,62166039);新疆维吾尔自治区自然科学基金(2020D01A35)

A method for maximizing the impact of social networks with network structure adaptability

WANG Xiaojie,HOU Xiaojing,Xu Chun,ZHANG Lei   

  1. (School of Information Management,Xinjiang University of Finance and Economics,Urumqi  830012,China)
  • Received:2023-11-24 Revised:2024-04-06 Online:2025-04-25 Published:2025-04-17

摘要: 影响最大化在社交网络分析和挖掘中得到了广泛的研究,其目的是找到一个具有k个节点的种子集合,使得该节点集合在某种传播模型下影响传播的范围最大。现有研究鲜有考虑网络结构对信息传播的影响,影响最大化算法通常对不同结构类型的网络适应性不强。针对该问题,研究了具有网络结构适应性的影响最大化问题,分析了网络结构对影响传播产生的影响。针对二者的影响关系,提出了3种分配策略以适应不同的网络类型;然后,在社区尺度上对节点影响力进行度量,构建初始种子节点集合;最后,对初始种子节点集合进行调优,进一步提高种子节点的质量。在具有不同结构的真实数据集和合成数据集上的实验表明,提出的算法在各项性能指标上均取得了较好的效果,发现了影响传播与种子节点间的平均距离之间,并不是种子节点间的距离越大,影响传播越好,这改变了在考虑传播重叠问题时对种子节点间平均距离的固有认知。

关键词: 社交网络, 影响最大化, 网络适应性, 分配策略, 社区结构

Abstract: Influence maximization (IM) has been extensively studied in the analysis and mining of social networks, aiming to find a seed set with k nodes to maximize the coverage of influence spread under a specific propagation model. The current studies rarely consider the influence of network structure on information propagation, and IM algorithms are typically not adaptive to networks with various structures. To solve this problem, this paper studies the IM problem with network structure adaptability, and analyzes the influence of network structure on information propagation. Firstly, according to the relation between network structure and propagation process, three allocation strategies are proposed to adapt to different network types. Secondly, with the influence of nodes measured at the community scale, the initial seed nodes set is constructed. Finally, the initial set of seed nodes is adjusted and optimized to further improve the quality of the seed nodes. Experiments on real and synthetic datasets with different structures show that the proposed algorithm achieves better performance. The paper discovers that the relation between influence spread and the average distance between seed nodes is not that the greater the distance, the better the influence spread, which changes the inherent perception of the average distance between seed nodes when considering the problem of propagation overlap.

Key words: social network, influence maximization, network structure adaptability, allocation strategy, community structure