• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (06): 1018-1027.

• 计算机网络与信息安全 • 上一篇    下一篇

基于人工智能方法的网络拥塞控制综述

李天云,李韬,温冬,杨惠,张毓涛,罗欣,董德尊   

  1. (国防科技大学计算机学院,湖南 长沙 410073)
  • 收稿日期:2024-10-08 修回日期:2024-11-01 出版日期:2025-06-25 发布日期:2025-06-26

A survey on artificial intelligence based congestion control

LI Tianyun,LI Tao,WEN Dong,YANG Hui,ZHANG Yutao,LUO Xin,DONG Dezun   

  1. (College of Computer Science and Technology,National University of Defense Technology,Changsha 410073,China)
  • Received:2024-10-08 Revised:2024-11-01 Online:2025-06-25 Published:2025-06-26

摘要: 随着网络应用的蓬勃发展与网络场景的日益多样化,拥塞控制算法的设计面临着前所未有的挑战。人工智能方法凭借强大的自适应性与决策能力,成为学术界和工业界关注的焦点。因此,基于人工智能方法的网络拥塞控制算法应运而生。系统梳理了近年来基于人工智能方法的网络拥塞控制研究进展,从技术途径、应用场景和训练与实验等方面展开分析,并在此基础上展望未来的研究方向。

关键词: 网络拥塞控制, 机器学习, 强化学习, 深度强化学习

Abstract: With the rapid development of network applications and the increasing diversification of network scenarios, the design of congestion control algorithms faces unprecedented challenges. Artificial intelligence (AI) methods, leveraging their robust adaptability and decision-making capabilities, have become a focal point for both academia and industry. Consequently, AI-based network congestion control algorithms have emerged. This paper systematically reviews recent advancements in AI-based network congestion control research, analyzing technical approaches, application scenarios, training, and experimentation. Building on this analysis, future research directions are also explored.

Key words: network congestion control, machine learning, reinforcement learning, deep reinforcement learning