• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (06): 1097-1105.

• 图形与图像 • 上一篇    下一篇

基于改进STN的指针式仪表图像校正方法

曲海成,张旺,田鹏飞   

  1. (辽宁工程技术大学软件学院(人工智能学院),辽宁 葫芦岛 125105)

  • 收稿日期:2023-12-22 修回日期:2024-05-20 出版日期:2025-06-25 发布日期:2025-06-26
  • 基金资助:
    辽宁省高等学校基本科研项目(LIKMZ20220699) 

An image calibration method for pointer instruments based on improved STN

QU Haicheng,ZHANG Wang,TIAN Pengfei   

  1. (School of Software(School of Artificial Intelligence),Liaoning Technical University,Huludao 125105,China)
  • Received:2023-12-22 Revised:2024-05-20 Online:2025-06-25 Published:2025-06-26

摘要: 针对指针式仪表校正任务中存在的倾斜旋转角度过大、常规校正方法校正效果不理想等问题,提出了一种基于改进STN的指针式仪表图像校正方法。该方法利用前置网络模型ASTN-FP对仪表图像的单应性参数和指针角度进行预测,添加自适应变换层和特征金字塔结构,增强模型对多尺度仪表处理的学习能力,提高网络性能。在训练阶段采用Sim2Real训练策略,引入合成数据集进行训练,并使用真实数据进行微调。在仪表校正阶段,将单应性变换和透视变换相结合,增强模型处理复杂变换的能力。最后在模拟和真实数据上进行了验证实验,结果表明:对比主流图像校正方法,所提方法在校正效率和平均校正时间上有了较大提升,校正后数据的识别精度为95.3%,验证了所提方法的有效性。

关键词: 仪表校正, 自适应变换层, 特征金字塔, Sim2Real;合成数据

Abstract: Aiming at the issues in pointer meter calibration tasks, such as excessive tilt rotation angles and unsatisfactory performance of conventional calibration methods, this paper proposes an improved STN-based image calibration method for pointer instruments. This method employs a front-end network model (ASTN-FP), to predict the homography parameters and pointer angles of meter images. By incorporating an adaptive transformation layer and a feature pyramid structure, it enhances the model’s learning capability for multi-scale meter processing and improves network performance. During the training phase, a Sim2Real training strategy is adopted, where synthetic datasets are used for initial training, followed by fine-tuning with real-world data. In the calibration stage, homography transformation and perspective transformation are combined to strengthen the model’s ability to handle complex transformations. Validation experiments conducted on both simulated and real-world data demonstrate that, compared to mainstream image calibration methods, the proposed method achieves significant improvements in calibration efficiency and average calibration  time, and achieves a recognition accuracy of 95.3% on the calibration  data, verifying the effectiveness of the proposed method.

Key words: instrument calibration, adaptive transformation layer, characteristic pyramid, Sim2Real, synthetic data