• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (06): 1106-1113.

• 人工智能与数据挖掘 • 上一篇    下一篇

基于ERNIE模型的雷达维修命名实体识别研究

曾垂振1,2,崔良中1,马文卓2   

  1. (1.海军工程大学电子工程学院,湖北 武汉 430033;2.陆军工程大学军械士官学校,湖北 武汉 430075)
  • 收稿日期:2024-09-09 修回日期:2024-09-30 出版日期:2025-06-25 发布日期:2025-06-26

Research on named entity recognition for radar maintenance based on the ERNIE model

ZENG Chuizhen1,2,CUI Liangzhong1,MA Wenzhuo2   

  1. (1.College of Electronic Engineering,Naval University of Engineering,Wuhan 430033;
    2.Ordnance NCO Academy,Army Engineering University of PLA,Wuhan 430075,China)
  • Received:2024-09-09 Revised:2024-09-30 Online:2025-06-25 Published:2025-06-26

摘要: 在雷达维修领域的知识图谱构建中,由于其专业性强、标注数据集稀缺,命名实体识别模型训练存在较大困难,传统模型训练效果达不到应用要求。在BiGRU-CRF模型的基础上引入了预训练模型,提出了ERNIE-BiGRU-CRF模型。首先,以某型号雷达为例,收集维修数据,并进行数据的预处理,同时使用doccano平台对数据进行人工标注,获得雷达维修领域命名实体识别数据1 100余条。然后,通过ERNIE预训练模型获取雷达维修训练数据的动态词向量,BiGRU获取双向语义信息。最后,通过CRF约束得到最合理的序列标注结果。实验结果表明,在少量训练语料的条件下,所提模型具有较强的识别效果,相比于BiGRU-CRF、BiLSTM-CRF模型,其F1值有一定提升,有效解决了雷达维修领域训练语料缺乏、训练效果不佳的问题,在雷达维修领域知识图谱的自动化构建中具有一定的实用价值。

关键词: 雷达维修, 命名实体识别, ERNIE模型, 大语言模型

Abstract: In the construction of a knowledge graph for radar maintenance, the strong specialization and scarcity of annotated datasets pose significant challenges in training named entity recognition (NER) models, with traditional model training failing to meet application requirements. Building upon the BiGRU-CRF model, this paper introduces a pre-trained model and proposes the ERNIE-BiGRU-CRF model. First, taking a specific radar model as an example, maintenance data were collected and preprocessed. The doccano platform was used for manual annotation, resulting in over 1,100 labeled NER data entries in the radar maintenance domain. Next, dynamic word embeddings for the radar maintenance training data were obtained using the ERNIE pre-trained model, while BiGRU captured bidirectional semantic information. Finally, the most reasonable sequence labeling results were derived through CRF constraints. Experimental results show that, with limited training data, the proposed model achieves strong recognition performance. Compared to BiGRU-CRF and BiLSTM-CRF models, it demonstrates an improvement in F1-score, effectively addressing the issues of insufficient training data and suboptimal training performance in the radar maintenance domain. This model holds practical value for the automated construction of knowledge graphs in radar maintenance.

Key words: radar maintenance, named entity recognition, enhanced representation through knowledge integration(ERNIE) model, large language model