• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (7): 1274-1284.

• 图形与图像 • 上一篇    下一篇

基于改进LESRCNN超分模型的高精度接触角测量方法研究

张毛迪1,王军1,2,孙晓红1   

  1. (1.苏州科技大学电子与信息工程学院,江苏 苏州 215009;
    2.中国科学院长春光学精密机械与物理研究所应用光学国家重点实验室,吉林 长春 130033)
  • 收稿日期:2023-12-15 修回日期:2024-07-16 出版日期:2025-07-25 发布日期:2025-08-25
  • 基金资助:
    “十四五”江苏省重点学科资助(2021135);江苏省研究生科研创新项目(KYCX17_2060)

A high-precision contact angle measurement method based on improved LESRCNN superresolution model

ZHANG Maodi1,WANG Jun1,2,SUN Xiaohong1   

  1. (1.School of Electronics & Information Engineering,Suzhou University of Science and Technology,Suzhou 215009;
    2.State Key Laboratory of Applied Optics,Changchun Institute of Optics,
    Fine Mechanics and Physics,Chinese Academy of Sciences,Changchun 130033,China)
  • Received:2023-12-15 Revised:2024-07-16 Online:2025-07-25 Published:2025-08-25

摘要: 针对当前接触角测量准确性与稳定性不高的问题,提出一种基于改进轻量级增强超分辨率网络LESRCNN接触角测量方法。改进网络采用由ResNet50借鉴Swin Transformer结构改进而来的ConvNeXt Block构成的特征提取器取代原网络的信息提取部分来提高超分性能,同时引入一个有效的增强空间注意力ESA增强其收集图像细粒度信息的能力,并使用高斯误差线性单元GELU取代修正线性单元ReLU作为激活函数提高网络的收敛速度。为提高拟合结果的鲁棒性,以Huber函数为权函数,用基于迭代重加权最小二乘IRLS的椭圆拟合法从液滴左右两侧同时进行轮廓拟合求取接触角大小。实验证明,在比例因子为3时,改进后的网络模型与原网络相比,对同一液滴数据集训练的峰值信噪比PSNR与结构相似性指数SSIM值分别提高了0.8 dB与0.002 6;对90°以下接触角标准片测量结果的准确性与稳定性分别提升了34.3%与7.4%,对90°及以上标准片测量结果的准确性与稳定性则分别提升了18.2%与29.4%。

关键词: 接触角测量, 超分辨率重建, 液滴轮廓拟合

Abstract: To address the current issues of low accuracy and stability in contact angle measurement,this paper proposes a contact angle measurement method based on an improved lightweight enhanced super-resolution network LESRCNN(lightweight enhanced  super-resolution CNN).The improved network replaces the original information extraction module with a feature extractor composed of ConvNeXt Blocks,which are enhanced by borrowing the Swin-T structure from ResNet50,to boost super-resolution performance.Additionally,an enhanced spatial attention (ESA) mechanism is introduced to improve the network's ability to capture fine-grained image details,and the Gaussian error linear unit (GELU) is adopted instead of the rectified linear unit (ReLU) as the activation function to accelerate convergence.Furthermore,to enhance the robustness of the fitting results,this paper employs the Huber function as the weighting function and utilizes an ellipse fitting method based on iteratively reweighted least squares (IRLS) to simultaneously fit the droplet contours from both left and right sides for contact angle calculation.Experimental results demonstrate that,at a scaling factor of 3,the improved network achieves a peak signal-to-noise ratio (PSNR) increase of 0.8 dB and a structural similarity index (SSIM) improvement of 0.0026 compared to the original network when trained on the same droplet dataset.For standard samples with contact angles below 90°,the accuracy and stability of measurements improved by 34.3% and 7.4%,respectively,while for samples with angles of 90° or above,the improvements were 18.2% and 29.4%,respectively.

Key words: contact angle measurement, super-resolution reconstruction, droplet contour fitting