• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (7): 1312-1320.

• 人工智能与数据挖掘 • 上一篇    下一篇

多策略改进的蝴蝶优化算法

张琪1,顾腾达1,任宇辰1,季津琪2,陈海涛1   

  1. (1.中国人民警察大学研究生院,河北 廊坊 065000;2.中科领航(天津)科技有限公司,天津 300051)

  • 收稿日期:2024-07-14 修回日期:2024-08-12 出版日期:2025-07-25 发布日期:2025-08-25
  • 基金资助:
    公安部理论与软科学项目(2022LL56);河北省省级科技计划(20375601D)

A butterfly optimization algorithm with multi-strategy improvement

ZHANG Qi1,GU Tengda1,REN Yuchen1,JI Jinqi2,CHEN Haitao1   

  1. (1.Graduate School,China People’s Police University,Langfang 065000;
    2.Zhongke Pilot(Tianjin) Technology Company,Tianjin 300051,China)
  • Received:2024-07-14 Revised:2024-08-12 Online:2025-07-25 Published:2025-08-25

摘要: 摘要:针对蝴蝶优化算法存在搜索精度差、全局搜索和局部开发能力不平衡、容易陷入局部最优等问题,为提升蝴蝶优化算法的鲁棒性和寻优能力,提出一种多策略改进的蝴蝶优化算法。该算法选用随机一致性初始化蝴蝶种群,使蝴蝶个体在搜索空间中的各个维度分布更加均匀,对解空间的覆盖率更广;引入动态惯性权重策略,平衡全局搜索与局部搜索;引入精英差分变异策略,提高算法的全局搜索能力。将改进后的算法与7种优化算法在17个基准函数上进行实验对比,结果表明,改进后的算法相比于原始蝴蝶优化算法,具有更好的收敛性和求解精度,且全局寻优能力和鲁棒性得到了提升。



关键词: 蝴蝶优化算法, 随机一致性初始化, 差分进化算法, 基准函数, Wilcoxon秩和检验

Abstract: Aiming at the shortcomings of the butterfly optimization algorithm (BOA),such as poor search accuracy,imbalanced global exploration and local exploitation capabilities,and susceptibility to local optima,this paper proposes a multi-strategy improved butterfly optimization algorithm (MSIBOA) to enhance its robustness and optimization performance.The improved algorithm adopts random consistency to initialize the butterfly population,ensuring a more uniform distribution of individuals across all dimensions of the search space and broader coverage of the solution space.Dynamic inertia weight strategy is introduced to balance global and local search,while an elite differential mutation strategy is incorporated to boost the algorithm's global search capability.Experimental comparisons between the improved algorithm and seven other optimization algorithms on 17 benchmark functions demonstrate that MSIBOA outperforms the original BOA in convergence speed,solution accuracy,global optimization capability,and robustness.

Key words: butterfly optimization algorithm(BOA), random consistency initialization, differential evolution(DE), benchmark function, Wilcoxon rank sum test