• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (8): 1417-1424.

• 计算机网络与信息安全 • 上一篇    下一篇

基于多视角时空对齐学习的恶意域名检测方法

金学奇1,2,徐红泉3,黄银强4,孙志华5   

  1. (1.华北电力大学控制与计算机工程学院,北京 102206;2.国网浙江省电力有限公司,浙江 杭州 310000;
    3.国网衢州供电公司,浙江 衢州 324000;4.国网金华供电公司,浙江 金华 321000;
    5.浙江华云信息科技有限公司,浙江 杭州 310000)
  • 收稿日期:2024-03-10 修回日期:2024-04-09 出版日期:2025-08-25 发布日期:2025-08-27
  • 基金资助:
    国家电网浙江省电力有限公司科技项目(5211QZ1900J5)

A novel malicious domain detection approach based on multi-perspective spatiotemporal alignment learning

JIN Xueqi1,2,XU Hongquan3,HUANG Yinqiang4,SUN Zhihua5   

  1.  (1.School of Control and Computer Engineering,North China Electric Power University,Beijing 102206;
    2.State Grid Zhejiang Electric Power Co.,Ltd.,Hangzhou 310000;
    3.State Grid Quzhou Power Supply Company,Quzhou 324000;4.State Grid Jinhua Power Supply Company,Jinhua 321000;
    5.Zhejiang Huayun Information Technology Co.,Ltd.,Hangzhou 310000,China)
  • Received:2024-03-10 Revised:2024-04-09 Online:2025-08-25 Published:2025-08-27

摘要: 针对当前恶意域名检测方法对域名字符串信息利用不充分和全局编码特征丢失的问题,提出一种基于多视角时空对齐学习的恶意域名检测新方法。首先,将域名字符串嵌入到图像中,并借助降噪自编码网络和卷积神经网络将域名字符串编码到文本和视觉特征空间,构造多视角特征集。然后,将特征图下采样为不同尺度的特征层,通过逐层迭代学习特征的梯度信息,增强特征的语义表达能力。最后,借助交叉注意力机制实现文本特征图和视觉特征图的对齐,并在对齐特征图上利用全局平均池化构造原型集,通过关联原型和待测域名特征,快速给出待测域名合法性的判定。在公开数据集上进行了二分类与多分类的测试,验证了所提方法的优越性。

关键词: 恶意域名检测, 字符串嵌入, 降噪自编码网络, 多视角特征, 交叉注意力

Abstract: Aiming at the problems of insufficient utilization of domain name string information and loss of global encoding features in current malicious domain detection methods,this paper proposes a novel malicious domain detection approach based on multi-perspective spatiotemporal alignment learning.Firstly,the domain name string is embedded into an image,and a denoising autoencoder network combined with a convolutional neural network (CNN) is employed to encode the domain name string into textual and visual feature spaces,constructing a multi-perspective feature set.Next,the feature maps are downsampled into different-scaled feature layers,and gradient information is learned through layer-by-layer iterative training to enhance the semantic representation capability of the features.Finally,a cross-attention mechanism is introduced to align the textual and visual feature maps.A prototype set is constructed using global average pooling on the aligned feature maps,enabling rapid determination of the legitimacy of a test domain by associating its features with the prototypes.Extensive experiments on public datasets,including binary- and multi-class classification tasks,demonstrate the superiority of the proposed approach.

Key words: malicious domain detection, string embedding, denoising autoencoder network, multiple perspective features, cross-attention

中图分类号: