• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (8): 1425-1436.

• 图形与图像 • 上一篇    下一篇

BF-YOLO:基于YOLOv8改进的小目标检测算法

蒲小莉,赖惠成,高古学   

  1. (新疆大学计算机科学与技术学院(网络空间安全学院),新疆 乌鲁木齐 830046)
  • 收稿日期:2024-02-27 修回日期:2024-05-31 出版日期:2025-08-25 发布日期:2025-08-27
  • 基金资助:
    新疆维吾尔自治区重点研发计划(No.2022B01008);科技创新2030—“新一代人工智能”重大项目(2022ZD0115803)

BF-YOLO:An improved small object detection algorithm based on YOLOv8

PU Xiaoli,LAI Huicheng,GAO Guxue   

  1. (School of Computer Science and Technology(School of Cyberspace Security),Xinjiang University,Urumqi 830046,China)

  • Received:2024-02-27 Revised:2024-05-31 Online:2025-08-25 Published:2025-08-27

摘要: 针对现有的目标检测算法对无人机拍摄目标检测精度较低、模型大且不易于部署的问题,提出改进YOLOv8的目标检测算法BF-YOLO。首先,对网络的输出检测层进行重构,增强了算法模型对小目标的检测能力;其次,引入感受野注意力卷积替换普通卷积,使网络关注目标位置信息,增强了模型对目标特征的学习能力;此外,设计了多尺度信息提取模块,通过多个分组卷积单元来提取不同感受野下的目标信息,减少模型参数量的同时提高了检测精度;最后,引入加权双向特征融合来改进颈部网络,实现多尺度特征融合,提高了模型对多尺度目标的识别能力。实验结果表明,在VisDrone-DET2019数据集上,改进后算法的mAP50比YOLOv8s提高了7.3%,且模型参数量减少了67.1%,有效实现了检测精度和模型轻量化的平衡。

关键词: 无人机图像, 小目标检测, YOLOv8, 特征融合

Abstract: To address the issues of low detection accuracy and large model size in existing object detection algorithms for UAV-captured images,this paper proposes an improved YOLOv8-based object detection algorithm named BF-YOLO.Firstly,the output detection layer of the network is reconstructed to enhance its capability for detecting small objects.Secondly,receptive field attention convolution is introduced to replace the standard convolution,enabling the network to focus on object location information and improving its ability to learn object features.Additionally,a multi-scale feature extraction module is designed,utilizing multiple grouped convolution units to capture object information at different receptive fields,thereby reducing the number of parameters while improving detection accuracy.Finally,a weighted bidirectional feature fusion method is incorporated into the neck network to enhance multi-scale feature fusion,boosting the model’s ability to recognize objects of varying scales.Experimental results on the VisDrone-DET2019 dataset demonstrate that the improved algorithm achieves a 7.3% increase in mAP50 compared to YOLOv8s,while reducing the model’s parameter count by 67.1%,effectively balancing detection accuracy and model lightweightness.

Key words: UAV image, small object detection, YOLOv8, feature fusion