• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (8): 1437-1448.

• 图形与图像 • 上一篇    下一篇

基于Ghost高效层聚合网络的多尺度融合YOLOv7-tiny改进算法#br#

欧阳玉旋,张荣芬,刘宇红,彭垚潘   

  1. (贵州大学大数据与信息工程学院,贵州 贵阳 550025)

  • 收稿日期:2024-02-05 修回日期:2024-05-26 出版日期:2025-08-25 发布日期:2025-08-27
  • 基金资助:
    贵州省基础研究(自然科学)项目(黔科合基础-ZK[2021]重点001)

An improved multi-scale fusion YOLOv7-tiny algorithm based on Ghost efficient layer aggregation network

OUYANG Yuxuan,ZHANG Rongfen,LIU Yuhong,PENG Yaopan   

  1. (College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China)
  • Received:2024-02-05 Revised:2024-05-26 Online:2025-08-25 Published:2025-08-27

摘要: 针对现有的大多数神经网络参数量大、推理速度慢、检测性能低且不便于部署边缘设备等问题,提出一种改进的YOLOv7-tiny算法。首先,根据原算法模型的结构特点,引入Ghost-ELAN模块以大幅度压缩模型;其次,使用Ghost Bottleneck-2代替网络Neck部分的卷积,进一步降低模型的规模;然后,使用多尺度融合模块Ghost-SPPCSPC提升模型对特征信息的理解能力,并采用GhostConv替换输出层卷积,在降低普通卷积冗余性的同时最大程度地利用模型中的语义信息;最后,使用迁移学习的方法,让模型学习到丰富的通用特征,提高模型的性能。实验结果表明,改进模型的参数量和模型大小较原模型分别降低和减小了57.19%和55.28%,实现了对原模型的重量级压缩,并提升了模型的精度,FPS达到了278,使模型达到快速、高效和便携的目的,更易于部署在边缘设备上。

关键词: YOLOv7-tiny, Ghost, 多尺度融合模块, 迁移学习, 边缘设备部署

Abstract: To address the common issues of excessive parameters,slow inference speed,limited detection performance,and difficulty in deploying neural networks on edge devices,this paper proposes an improved YOLOv7-tiny algorithm.Firstly,according to the characteristics of the original algorithm model structure,Ghost-ELAN module is introduced to compress the model greatly.Secondly,Ghost Bottleneck-2 is used to replace the convolution of the Neck part of the network,which further reduces the scale of the model.Then,the multi-scale fusion module Ghost-SPPCSPC is used to improve the understanding of feature information of the model,and the output layer convolution is replaced by GhostConv,which reduces the redundancy of common convolution and makes the maximum use of semantic information in the network.Finally,transfer learning is employed for enhancing generalized feature learning and improving performance of the model.Experimental results demonstrate that the improved model reduces parameter count and model size by 57.19% and 55.28%,respectively,achieving substantial compression over the original model while enhancing accuracy.With an inference speed of 278,the proposed model attains rapid,efficient,and lightweight objectives,making it highly suitable for deployment on edge devices.


Key words: YOLOv7-tiny, Ghost, multi-scale fusion module, transfer learning, edge device deployment