• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2025, Vol. 47 ›› Issue (8): 1449-1458.

• 图形与图像 • 上一篇    下一篇

基于细粒度局部伪影的生成式图像检测

袁程胜1,2,陈金瑞1,2,徐晨维3,刘庆程1,2,付章杰1,2   

  1. (1.南京信息工程大学计算机学院、网络空间安全学院,江苏 南京 210044;
    2.南京信息工程大学数字取证教育部工程研究中心,江苏 南京 210044;
    3.国网江苏省电力有限公司信息通信分公司,江苏 南京 210000)  
  • 收稿日期:2024-11-14 修回日期:2024-12-16 出版日期:2025-08-25 发布日期:2025-08-27
  • 基金资助:
    国家自然科学基金(U22B2062,U23B2023,62102189);国家社会科学基金(2022-SKJJ-C-082)

Generative image detection based on fine-grained local artifacts

YUAN Chengsheng 1,2,CHEN Jinrui 1,2,XU Chenwei 3,LIU Qingcheng 1,2,FU Zhangjie 1,2   

  1. (1.School of Computer Science,School of Cyber Science and Engineering,Nanjing University of 
    Information Science & Technology,Nanjing 210044;
    2.Engineering Research Center of Digital Forensic,Ministry of Education,Nanjing University of 
    Information Science & Technology,Nanjing 210044;
    3.State Grid Jiangsu Electric Power Information & Telecommunication Branch,Nanjing 210000,China) 
  • Received:2024-11-14 Revised:2024-12-16 Online:2025-08-25 Published:2025-08-27

摘要: 随着人工智能技术的飞速发展,利用生成对抗网络(GAN)与扩散模型(Diffusion Model)等模型生成的图像,已达到肉眼难以辨识真伪的高度逼真水平。尽管当前检测技术能在特定任务中展现优异性能,但是面对未知模型生成的图像时,其泛化能力往往不尽如人意。为了应对这一挑战,提出一种基于细粒度局部伪影的双分支框架,旨在深入挖掘图像全局的空间特征以及多个局部区域的伪造痕迹。利用生成式图像普遍存在的上采样操作在空间域上导致的细粒度伪影现象,并结合图像全局结构信息与局部细节信息,显著提升了检测方法在不同场景中的泛化能力。通过这一方法,能够更全面地分析图像的细粒度篡改痕迹并学习生成式图像的独特指纹,在鉴别AI生成式图像方面展现出更强的鲁棒性和准确性。实验结果表明,本文所提方法在处理多种GAN和扩散模型生成的数据集时均表现出色,进一步验证了其有效性。

关键词: 生成对抗网络, 扩散模型, 伪造检测, 生成式检测

Abstract: With the rapid development of artificial intelligence technologies,images generated by models such as generative adversarial network (GAN) and diffusion model have reached a highly realistic level that it is difficult for the human eye to recognize the authenticity.Existing detection techniques show good performance under specific conditions,but their generalization abilities are usually unsatisfactory when facing images generated from unknown models and data.To address the above problems,this paper proposes a two-branch framework based on fine-grained local artifacts,which fully exploits the global spatial features of the image as well as the feature information extracted from multiple local regions.The artifacts caused by upsampling operations at the fine-grained level in the spatial domain,which are common in generative images,are exploited and combined with the global structural information of the image and the local detail information to enhance the generalization ability of the detection model in coping with different scenarios.With this strategy,the proposed method is able to analyze the image content more comprehensively and identify the unique fingerprints of the synthetic images,and shows stronger robustness and accuracy in identifying AI synthetic images.Experimental results show that the proposed method exhibits good performance when dealing with datasets generated by various GANs and diffusion models,further verifying the method’s excellent generalization ability.

Key words: generative adversarial nework(GAN), diffusion model, forgery detection, generative detection