• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学 ›› 2026, Vol. 48 ›› Issue (1): 51-60.

• 计算机网络与信息安全 • 上一篇    下一篇

基于PUF的TPM架构设计与应用研究

施江勇,高志远,刘天祎,刘威,郭振斌,张咏鼎,李少青   

  1. (1.国防科技大学计算机学院,湖南 长沙 410073;2.78156部队,重庆 400050)

  • 收稿日期:2024-04-11 修回日期:2024-09-16 出版日期:2026-01-25 发布日期:2026-01-25

TPM design and application based on PUF

SHI Jiangyong,GAO Zhiyuan,LIU Tianyi,LIU Wei,GUO Zhenbin,ZHANG Yongding,LI Shaoqing   

  1. (1.College of Computer Science and Technology,National University of Defense Technology,Changsha 410073;
    2.Troop of 78156,Chongqing 400050,China)
  • Received:2024-04-11 Revised:2024-09-16 Online:2026-01-25 Published:2026-01-25

摘要: 现有的可信平台模块TPM主要依赖单一RSA公私钥对作为安全的可信根基础,该RSA密钥对固定不变地存储于TPM芯片中。因此,此种设计架构可能使得系统面临着物理分析与侧信道分析等物理层面攻击的威胁,进而导致系统的安全性难以得到有效保障。为此,提出采用物理不可克隆函数PUF作为可信根,利用PUF具有的物理不可篡改性、随机性和不可预测性等安全特性,设计并实现了基于PUF的TPM架构。此外,还针对现有研究中密钥生成算法存在的安全漏洞以及认证机制的不完善等问题进行了有效的改进,并将改进后的设计应用于可信启动验证及固件的安全更新中,从而有效提升了可信计算环境面临安全威胁的防御能力。通过BAN逻辑和协议自动化验证工具AVISPA对所提协议的安全性进行了深入分析,并在ZynqTM 7000系列开发板上实现了可信启动的相关实验,结果表明了所提出的方法可增强密钥生成算法的安全性,并有效降低了对引导程序和固件更新数据进行篡改等攻击的威胁。性能评估结果显示,所提协议整个认证过程平均时长仅0.06 s,展现出了其在性能上的优越性。


关键词: 加解密;PUF, 可信启动, 固件更新;认证协议

Abstract: Existing trusted platform modules (TPMs) primarily rely on a single RSA public-private key pair as the foundation for secure trusted root, with this RSA key pair being permanently stored within the TPM chip. Consequently, this design architecture may expose the system to threats from physical-level attacks, such as physical analysis and side-channel analysis, thereby making it difficult to effectively guarantee system security. To address this issue, this paper proposes the use of a physically unclonable function (PUF) as the trusted root. By leveraging the secure characteristics of PUFs, includ- ing their physical tamper-resistance, randomness, and unpredictability, a PUF-based TPM architecture is designed and implemented. Furthermore, this paper effectively improves upon the security vulnerabilities in key generation algorithms and the inadequacies in authentication mechanisms identified in existing research. The improved design is then applied to trusted boot verification and secure firmware updates, thereby significantly enhancing the defense capabilities against security threats in trusted comput- ing environments. The security of the proposed protocol is thoroughly analyzed using BAN logic and the protocol automated verification tool AVISPA. Additionally, relevant experiments on trusted boot are conducted on the ZynqTM  7000 series development board. The results demonstrate that the proposed method enhances the security of key generation algorithms and effectively reduces the threats posed by adversaries tampering with bootloader and firmware update data, thereby compromising the system. Performance evaluation results indicate that the average duration of the entire authentication process in the proposed protocol is merely 0.06 seconds, showcasing its superior performance.


Key words: encryption and decryption, PUF, trusted boot, firmware update, authentication protocol