J4 ›› 2013, Vol. 35 ›› Issue (2): 147-153.
李宝,程志全,党岗,金士尧
LI Bao,CHENG Zhiquan,DANG Gang,JIN Shiyao
摘要:
点云中提取的特征线在点云处理中具有重要的应用价值,已被应用于对称性检测、表面重建及点云与图像之间的注册等。然而,已有的点云特征线提取算法无法有效地处理点云中不可避免的噪声、外点和数据缺失,而随机采样一致性RANSAC由于具有较高的鲁棒性,在图像和三维模型处理中具有广泛的应用。为此,针对由建筑物或机械部件等具有平面特征的物体扫描得到的点云,提出了一种基于RANSAC的特征线提取算法。本算法首先基于RANSAC在点云中检测出多个平面,然后将每个平面参数化域的边界点作为候选,在这些候选点上再应用基于全局约束的RANSAC得到最终的特征线。实验结果表明,该算法对点云中的噪声、外点和数据缺失具有很强的鲁棒性。