• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2013, Vol. 35 ›› Issue (3): 108-114.

• 论文 • 上一篇    下一篇

次成分分析神经网络方法

孔祥玉,胡昌华,胡友涛,何川,王兆强   

  1. (第二炮兵工程大学,陕西 西安 710025)
  • 收稿日期:2011-11-05 修回日期:2012-04-19 出版日期:2013-03-25 发布日期:2013-03-25
  • 基金资助:

    国家自然科学基金资助项目(61074072);国家杰出青年基金资助项目(61025014)

Minor component analysis neural network method  

 KONG Xiangyu,HU Changhua,HU Youtao,HE Chuan,WANG Zhaoqiang   

  1. (The Second Artillery Engineer University,Xi’an 710025,China)
  • Received:2011-11-05 Revised:2012-04-19 Online:2013-03-25 Published:2013-03-25

摘要:

次成分分析神经网络是一种自动迭代求取输入数据自相关矩阵的次成分方法,近十年来在国际上得到广泛深入的研究。本文将次成分学习算法归纳为普通发散、突然发散、动态发散、数值发散和自稳定特性等四种发散现象和一种特性来分析,并指出了该领域存在的问题和下一步发展趋势,为神经网络次成分分析理论奠定了理论基础。

关键词: 神经网络, 次成分分析, 自稳定特性

Abstract:

The minor component analysis neural network is a method for adaptively extract the minor component of the autocorrelation matrix of the input data,which has been researched in the last decade.This paper analyzes and summarizes the minor component analysis learning algorithm as general divergence,sudden divergence,dynamic divergence,numerical divergence and selfstabilizing property,and points out the existing problems and the future development trend of this fields,and this work lays sound theoretical foundations for the neural MCA theory.

Key words: neural network;minor component analysis;selfstabilizing property