• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (01): 137-144.

• 论文 • 上一篇    下一篇

夜晚车辆异常事件分析

陈永强1,高建华2,韩军1,顾明3   

  1. (1.上海大学通信与信息工程学院,上海 200072;2.河南交通职业技术学院,河南 郑州 450005;
    3.清华大学精密仪器系,北京 100084)
  • 收稿日期:2012-07-20 修回日期:2012-10-08 出版日期:2014-01-25 发布日期:2014-01-25
  • 基金资助:

    2012河南省中原高速科技支撑项目

Vehicle abnormal events analysis at night      

CHEN Yongqiang1,GAO Jianhua2,HAN Jun1,GU Ming3   

  1. (1.College of Communication and Information Engineering,Shanghai University,Shanghai 200072;
    2.Henan Vocational and Technical College of Communications,Zhengzhou 450005;
    3.Department of Precision Instruments and Mechanology,Tsinghua University,Beijing 100084,China)
  • Received:2012-07-20 Revised:2012-10-08 Online:2014-01-25 Published:2014-01-25

摘要:

夜晚车道模型是车辆跟踪和车辆行为分析的基础,但是当高速公路或者城市道路光线较暗时,很难通过车道检测的方法来建立车道模型,夜晚车辆快速行驶或相邻帧车辆之间重叠度较低时无法实现准确跟踪。针对此类问题提出了一种基于学习的车道模型建立方法和基于多帧的最佳匹配跟踪方法。首先利用自动多阈值分割方法提取场景中光亮的目标;其次,利用车灯的相关特征移除非车灯光亮区域;接着,利用空间信息把车灯聚类成一个车辆目标,利用多帧的最佳匹配跟踪方法进行跟踪;最后利用车辆跟踪参数与车道模型的融合对夜晚车辆异常事件进行分析。实验结果表明,该算法能够准确地检测出夜晚车辆换道、逆向行驶、交通拥挤、停车等异常事件,并且有很强的鲁棒性。

关键词: 交通监控, 车辆检测, 车辆跟踪, 异常事件分析, 车道模型

Abstract:

The vehicle lane model is the base of vehicle tracking and vehicle behavior analysis. However, it is difficult to establish vehicle lane model through lane detection algorithm because it is dark on the highway or urban road, and it is difficult to track vehicle exactly when the video frame rate is slow or the vehicle’s speed is too fast. Therefore, the learning based vehicle lane model establishment method and the multi frames based best matching tracking method are proposed. Firstly, a fast brightobject segmentation process based on automatic multilevel histogram threshold is applied to extract bright objects effectively. Secondly, some novehicle brightregions are removed by some features of vehicle's lamps. What’s more, the lamps are clustered into a car object by using spatial information and tracked by the multi frame based best matching tracking method. Finally, tracking information and vehicle lane mode are used to analyze abnormal events. Experimental results show that the algorithm can exactly detect abnormal events such as changing lane, reverse driving, heavy traffic, stopping car etc at night and it has strong robustness.

Key words: traffic surveillance;vehicle detection;vehicle tracking;abnormal events analysis;vehicle lane model