• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2014, Vol. 36 ›› Issue (08): 1462-1468.

• 论文 • 上一篇    下一篇

基于强化学习的自适应中间件在线更新机制研究

王建军,刘玉林   

  1. (河北经贸大学现代教育技术中心,河北 石家庄 050061)
  • 收稿日期:2012-12-10 修回日期:2013-03-07 出版日期:2014-08-25 发布日期:2014-08-25

Online updating of self-adaptive middleware
based on reinforcement learning       

WANG Jianjun,LIU Yulin   

  1. (Center of Modern Education Technology,Hebei University of Economics and Business,Shijiazhuang 050061,China)
  • Received:2012-12-10 Revised:2013-03-07 Online:2014-08-25 Published:2014-08-25

摘要:

自适应中间件框架一般根据预先定义的策略、按照监控、分析、决策、执行的流程实现对开放可变系统的闭环控制。但是,传统的自适应框架基于离线的闭环控制,即在提供自适应服务的同时,自身的决策模型不能随实时的环境变化而更新。针对该问题提出一种基于强化学习的自适应中间件的在线更新方案,解决自适应策略的冲突消解、系统实时效用评估问题,并设计一种基于强化学习的自适应策略在线学习更新方法,增强了自适应中间件的智能性、灵活性和应变能力。最后实现了相应的支撑系统OUSAM并在其上验证了该机制的有效性和可行性。

关键词: 自适应中间件, 在线更新, 智能决策, 强化学习

Abstract:

One common approach of selfadaptive middleware is to incorporate a control loop that monitors, analyzes, decides and executes over a target system with predefined strategies. Such approach is an offline adaptation where strategies or adaptive models are statically determined so as not to change with environment. Aiming at the problem, an online updating mechanism of selfadaptive middleware based on reinforcement learning is proposed to solve the problems of conflict resolution and realtime system effectiveness evaluation, and an online updating method of selfadaptive policy based on reinforcement learning is designed, thus enhancing intelligence, flexibility and reaction capability. Finally, the corresponding system OUSAM is implemented and the effectiveness and feasibility of the mechanism is validated on OUSAM.

Key words: self-adaptive middleware;online updating;intelligent decision;reinforcement learning