J4 ›› 2014, Vol. 36 ›› Issue (12): 2286-2295.
万聪,王翠荣,王聪,吕艳霞,贾朔
WAN Cong,WANG Cuirong,WANG Cong,L Yanxia,JIA Shuo
摘要:
MapReduce是一个能够对大规模数据进行分布式处理的框架,目前被各个领域广泛应用。在提供MapReduce服务的集群中,如何保证不同优先级用户的截止时间限定是MapReduce作业调度问题的一个挑战。针对这一问题,提出了一个基于排队网络的多优先级作业调度算法(MPSA)。首先分析和归纳了基于MapReduce模型的算法,提出了三种常见模式,采用Jackson排队网络对基于MapReduce模型的算法建立了数学模型,应用该网络模型可以求出不同优先级队列对资源的需求;随后使用AR(1)模型进行预测,使算法可以动态地适应不同的用户访问量;利用二分查找算法,分步计算出不同优先级在map阶段和reduce阶段分配的槽位数;最后实现了在MapReduce模型中应用的实时调度算法。实验结果表明,与传统的FIFO和公平调度算法相比,本文提出的算法在用户到达率和任务规模变化的情况下,可以更加有效地满足不同优先级用户的截止时间限定。