• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (05): 1001-1008.

• 论文 • 上一篇    下一篇

ICIC_Prediction:基于因果关系全局动态特性的预测方法

李岩1,王挺1,张晓艳2   

  1. 2(1.国防科学技术大学计算机学院,湖南 长沙 410073;2.国防科学技术大学人文与社会科学学院,湖南 长沙 410073)
  • 收稿日期:2015-01-09 修回日期:2015-03-12 出版日期:2015-05-25 发布日期:2015-05-25
  • 基金资助:

    国家自然科学基金资助项目(61170287,60873097)

ICIC_Prediction:A novel predictive method based on
global dynamic properties of causality system 

LI Yan1,WANG Ting1,ZHANG Xiaoyan2   

  1. (1.College of Computer,National University of Defense Technology,Changsha 410073;2.College of Humanities and Social Science,National University of Defense Technology,Changsha 410073,China)
  • Received:2015-01-09 Revised:2015-03-12 Online:2015-05-25 Published:2015-05-25

摘要:

因果关系的预测是因果关系研究的重要内容和主要应用。现有的很多预测方法以寻找最优预测方程或最小特征变量集合为目的,以简化计算。提出一种新的可用于处理政策干预的因果关系预测方法ICIC_Prediction,不局限于利用马尔科夫毯等特征变量集合,而是从因果关系网络结构出发,利用因果关系系统及其采样数据的动态全局特性,预测目标变量在当前采样中的取值。通过在NIPS 2008 “因果与预测”的评测会议上发布的四个不同类型的数据集上的对比实验,分析并展示了ICIC_Prediction方法的优势和特点。

关键词: 因果关系, 因果关系分析, 因果关系预测, 概率失效, 政策干预

Abstract:

Causality prediction is an important part and a  promoing application of causality research. To simplify prediction, traditional methods usually use optimal structure equation or minimum feature set, such as Markov Blanket (MB) of the target variable, to make predictions. We present a novel method avoiding some limitations of the traditional methods by using global dynamic properties of causality analysis based on causal structure with samples to make prediction of the target variable under the effect of unknown policy manipulations performed by an external agent. Several experiments have been done to compare GC, VAR and several other popular methods with ICIC_Prediction based on four datasets published in challenge of “Causation and Prediction” in NIPS 2008 for analyzing and showing the advantages and properties of our method.

Key words: causality;causality analysis;causality prediction;probability failure;policy manipulation