• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2015, Vol. 37 ›› Issue (09): 1724-1729.

• 论文 • 上一篇    下一篇

基于区间分布密度的背景初始化方法

火元莲,秦梅,邱振   

  1. (西北师范大学物理与电子工程学院,甘肃 兰州 730070)
  • 收稿日期:2014-12-22 修回日期:2015-04-16 出版日期:2015-09-25 发布日期:2015-09-25

A background initialization method
based on interval distribution density 

HUO Yuanlian,QIN Mei,QIU Zhen   

  1. (School of Physics and Electronic Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2014-12-22 Revised:2015-04-16 Online:2015-09-25 Published:2015-09-25

摘要:

为了从有运动物体存在的监控视频中提取初始化背景,提出一种基于区间分布密度的背景建模方法。首先将背景训练序列中所有像素点的灰度值按大小归类,然后通过计算区间分布密度筛选出包含背景信息最为完整的灰度区间,完成背景初始化。考虑到初始背景的提取可能受到部分图像光线突变的影响,在背景建模之前采用最小均方误差理论对背景训练序列进行突变检测。实验结果表明,该方法简单易行,可以排除光线的干扰,具有较好的适应性,能够在较短时间内得到较为逼真的初始背景。

关键词: 车辆检测, 背景初始化, 突变检测, 区间分布密度

Abstract:

In order to extract the initial background from the surveillance videos which contain moving objects, we propose a background modeling method based on interval distribution density. Firstly, all the pixel gray values of the background training sequence are classified by size. Then the gray intervals contain the most complete background information are filtered out by calculating the interval distribution density. Considering that the initial background extraction may be affected by the light mutation of some of images, the minimum mean square error theory is adopted to detect the light mutation of background training sequence before modeling. Experimental results show that the proposed method is easy to implement, and has good adaptability. Besides, it can eliminate the interference of light, and achieve a more realistic initial background in shorter time.

Key words: vehicle detection;background initialization;mutation detection;interval distribution density