• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (03): 486-493.

• 论文 • 上一篇    下一篇

高校科研能力的协同IWD粗糙集-块神经网络评估模型

刘春霞1,2,田芸2   

  1. (1.滨州学院信息工程系,山东 滨州 256603;2.首都师范大学数学科学学院,北京 100048)
  • 收稿日期:2015-07-13 修回日期:2015-10-20 出版日期:2016-03-25 发布日期:2016-03-25
  • 基金资助:

    滨州市科技发展项目(2014ZC0210);滨州学院科研基金(BZXYQNLG201006)

An evaluation model of scientific research ability
of universities based on cooperative IWD and RBNN          

LIU Chunxia1,2,TIAN Yun2   

  1. (1.Department of Information Engineering,Binzhou University,Binzhou 256603;
    2.School of Mathematical Sciences,Capital Normal University,Beijing 100048,China)
  • Received:2015-07-13 Revised:2015-10-20 Online:2016-03-25 Published:2016-03-25

摘要:

针对高校科研能力评估过程中存在的多因素、高非线性特点,经典评估模型主观性较强,导致模型评估准确性不高的问题,提出基于协同智能水滴算法IWD和粗糙集块神经网络RBNN的高校科研能力评估模型。首先,引入智能水滴算法,并针对传统智能水滴算法固定旁域搜索范围不利于提升算法搜索效率的问题,提出一种局部空间自动缩放算法LSAS,该算法根据当前种群最优个体,自动调整下一步搜索空间大小,对进化过程进行指导,提高算法的进化效率;其次,基于粗糙集理论对高校科研能力数据进行特征预处理,简化数据计算量;最后,对块神经网络和粗糙集参数进行编码,并对高校科研能力模型进行评估。仿真结果表明,此评估模型具有较高的准确性和较快的计算效率。

关键词: 智能水滴, 块神经网络, 粗糙集, 高校科研能力, 协同计算

Abstract:

Aiming at the problems in the evaluation process of the scientific research abilities due to its multiple factors and high non linear characteristics, as well as the subjective assessment in classic models, which leads to low accuracy, we propose an evaluation model of the collaborative ability of scientific research based on the intelligent water drops (IWD) algorithm and the rough set block neural network (RBNN). We first introduce the IWD algorithm, and design a local spatial auto scaling algorithm (LSSA) to solve the problem of fixed beside domain search range of the traditional IWD algorithm that is not conducive to improve search efficiency. The LSSA can automatically adjust the next search space size according to the best individual of current population, thus improving the evolutionary efficiency of algorithms. Based on the rough set theory, the data of scientific research ability of universities is preprocessed, which can simplify data calculation. Finally, the parameters of the block neural network and the rough set are encoded, and the model of scientific research abilities is evaluated. Simulation results show that the model has high accuracy and fast computational efficiency.  

Key words: intelligent water drop (IWD);block neural network;rough set;efficient scientific research ability;cooperative computation