J4 ›› 2016, Vol. 38 ›› Issue (03): 585-589.
樊广佺1,马丽平2
FAN Guangquan1,MA Liping2
摘要:
Mundur等提出了一种基于Delaunay三角网的聚类算法,并将其应用于视频帧的多维特征数据的聚类以生成视频摘要,取得了较好的效果。但是,该算法计算量太大,导致效率不高。为提高该算法的效率,以适合于对大数据集的处理,提出了一种改进的基于Delaunay三角网的聚类算法。通过在典型数据集上的实验,提出了一种新的确定全局聚类阈值的方法,使得计算量大为减少。实验结果表明,该算法无需用户提供聚类参数,也能得到良好的聚类结果,因此能够实现聚类过程自动化;并且计算速度更快,效率更高,适合于大数据集的处理。