• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

J4 ›› 2016, Vol. 38 ›› Issue (05): 885-890.

• 论文 • 上一篇    下一篇

基于神经网络预测的SNP信息的剪接点识别算法研究

赵婧1,魏彬2,陈明淑1,张晓娟1   

  1. (1.西京学院控制工程学院,陕西 西安 710123;2.武警工程大学,陕西 西安 710086)
  • 收稿日期:2015-04-16 修回日期:2015-07-10 出版日期:2016-05-25 发布日期:2016-05-25
  • 基金资助:

    西京学院科研基金(XJ140115);武警工程大学基础研究基金(WJY201518)

A splice site prediction algorithm
based on SNP and neural network  

ZHAO Jing1,WEI Bin2,CHEN Mingshu1,ZHANG Xiaojuan1   

  1. (1.School of Control Engineering,Xijing University,Xi’an 710123;2.Armed Police Engineering University,Xi’an 710086,China)
  • Received:2015-04-16 Revised:2015-07-10 Online:2016-05-25 Published:2016-05-25

摘要:

随着基因组计划的完成,人们需要尽快从这些海量数据中了解基因组的结构,揭示生命的奥秘,剪接位点识别是其中的一个重要环节,然而到目前为止该问题仍未能得到很好的解决。在分析此问题时引入了第三代遗传标记单核苷酸多态性(SNP),以期探索变异对剪接机制的影响;其次,对DNA序列的数字化进行了探讨。通过实验表明,单核苷酸多态性的引入对于剪接位点识别算法的性能有着一定的影响,此外文中提出的编码方法对预测精度的提升亦有正面作用,整体效果比目前常用方法有了大幅提升。

关键词: SNP, 剪接位点预测, 人工神经网络, 符号序列分析

Abstract:

Along with the progress of Human Genome Plan, people need to find out the genome structure from gained information. Recognition of splice sites is an essential part of this task. However, it is also a complicated problem, and satisfied results still cannot be reached. We design a splice site prediction algorithm based on BP network and SNP data to discover the influence of SNP on splice. In addition, a new encoding method is used to convert the DNA character sequences into decimal strings. Experimental results show the effectiveness of the SNP data and the new encoding method.

Key words: SNP;splice site prediction;artificial neural network;symbolic series analysis