摘要:
重点研究了极限学习机ELM对行为识别检测的效果。针对在线学习和行为分类上存在计算复杂性和时间消耗大的问题,提出了一种新的行为识别学习算法(ELM-Cholesky)。该算法首先引入了基于Cholesky分解求ELM的方法,接着依据在线学习期间核函数矩阵的更新特点,将分块矩阵Cholesky分解算法用于ELM的在线求解,使三角因子矩阵实现在线更新,从而得出一种新的ELM-Cholesky在线学习算法。新算法充分利用了历史训练数据,降低了计算的复杂性,提高了行为识别的准确率。最后,在基准数据库上采用该算法进行了大量实验,实验结果表明了这种在线学习算法的有效性。
周书仁1,2,曹思思1,2,蔡碧野1,2. 基于改进极限学习机算法的行为识别[J]. 计算机工程与科学.
ZHOU Shu-ren1,2,CAO Si-si1,2,CAI Bi-ye1,2.
An action recognition algorithm based on
improved extreme learning machine
[J]. Computer Engineering & Science.