• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于改进极限学习机算法的行为识别

周书仁1,2,曹思思1,2,蔡碧野1,2   

  1. (1.长沙理工大学综合交通运输大数据智能处理湖南省重点实验室,湖南 长沙 410114;
    2.长沙理工大学计算机与通信工程学院,湖南 长沙 410114)
  • 收稿日期:2016-01-21 修回日期:2016-04-12 出版日期:2017-09-25 发布日期:2017-09-25
  • 基金资助:

    国家自然科学基金(61402053);湖南省教育厅资助科研项目(17A007);湖南省交通厅科技资助项目(201334);2015年湖南省研究生科研创新资助项目(CX2015B369)

An action recognition algorithm based on
improved extreme learning machine

ZHOU Shu-ren1,2,CAO Si-si1,2,CAI Bi-ye1,2   

  1. (1.Hunan Provincial Key Laboratory of Intelligent Processing of Big Data on Transportation,
    Changsha University of Science and Technology,Changsha 410114;
    2.School of Computer and Communication Engineering,
    Changsha University of Science and Technology,Changsha 410114,China)
  • Received:2016-01-21 Revised:2016-04-12 Online:2017-09-25 Published:2017-09-25

摘要:

重点研究了极限学习机ELM对行为识别检测的效果。针对在线学习和行为分类上存在计算复杂性和时间消耗大的问题,提出了一种新的行为识别学习算法(ELM-Cholesky)。该算法首先引入了基于Cholesky分解求ELM的方法,接着依据在线学习期间核函数矩阵的更新特点,将分块矩阵Cholesky分解算法用于ELM的在线求解,使三角因子矩阵实现在线更新,从而得出一种新的ELM-Cholesky在线学习算法。新算法充分利用了历史训练数据,降低了计算的复杂性,提高了行为识别的准确率。最后,在基准数据库上采用该算法进行了大量实验,实验结果表明了这种在线学习算法的有效性。
 
 

关键词: 极限学习机, 在线学习, Cholesky分解, 核函数

Abstract:

We focus on detecting the efficiency of extreme learning machine (ELM) on action recognition. To overcome the problems of computational complexity and time consumption of online learning and action classification, we propose a new action recognition algorithm (ELM-Cholesky). Firstly, a method based on Cholesky decomposition to seek the calculation of ELM is introduced into the algorithm. Secondly, according to the characteristics of kernel function matrix updates during  online learning, we utilize the partitioned Cholesky decomposition algorithm for online solution to ELM, which realizes online updating of the triangular factor matrix. Finally, we can obtain a new online learning algorithm, called ELM-Cholesky. The new algorithm can make full use of historical training data, reduce the complexity of calculation, and improve action identification accuracy. Moreover, extensive experiments on benchmark database verify the effectiveness of this online learning algorithm.
 

Key words: extreme learning machine, online learning, Cholesky decomposition, kernel function