• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

基于广义回归神经网络的壁画修复研究

任小康,陈培林   

  1. (西北师范大学计算机科学与工程学院,甘肃 兰州 730070)
  • 收稿日期:2016-05-18 修回日期:2016-06-23 出版日期:2017-10-25 发布日期:2017-10-25
  • 基金资助:

    国家自然科学基金(61363059)

Murals inpainting based on generalized
regression neural network

REN Xiao-kang,CHEN Pei-lin   

  1. (College of Computer Science and Engineering,Northwest Normal University,Lanzhou 730070,China)
  • Received:2016-05-18 Revised:2016-06-23 Online:2017-10-25 Published:2017-10-25

摘要:

提出使用广义回归神经网络进行敦煌壁画的数字化修复保护研究。通过各向异性扩散去除待修复壁画图像的噪声,使用形态
学膨胀算子提取待修复区域的边界像素点,利用与待修复区域边界邻域像素相似的样本像素块作为广义回归神经网络的输入
训练样本,并对样本块像素值采用之字形扫描输入到广义回归神经网络。同时使用自适应的平滑参数,最后获得近似的广义
回归神经网络修复模型,使用该模型预测待修复区域的像素信息。实验表明,该方法对壁画的数字化修复有一定的效果。
 

关键词: 壁画修复, 广义回归神经网络, 形态学膨胀, 各向异性扩散

Abstract:

We propose a digital inpainting and protection method for Dunghuang murals through the application of the
generalized regression neural network. The damaged mural images are denoised with the anisotropic diffusion
method. Morphological dilation operator is applied to extract the boundary pixels in the damaged region. The
sample blocks of pixels similar to those around the boundary of the damaged region serve as input training
samples of the generalized regression neural network. The pixel values of the sample blocks are input into
the generalized regression neural network by the zigzag scanning. Adaptive smoothing parameters, in addition,
are also used. Finally, an approximate inpainting model is obtained, which can predict the information of the
pixels in the damaged region. Experimental results indicate that the proposed method is effective in the
digital inpainting of murals.

Key words: mural inpainting, generalized regression neural network, morphological dilation;anisotropic diffusion