• 中国计算机学会会刊
  • 中国科技核心期刊
  • 中文核心期刊

计算机工程与科学

• 论文 • 上一篇    下一篇

一种改进的稀疏迭代最近点算法

周游,耿楠,张志毅   

  1. (西北农林科技大学信息工程学院,陕西 杨凌 712100)
  • 收稿日期:2016-04-29 修回日期:2016-06-07 出版日期:2017-10-25 发布日期:2017-10-25
  • 基金资助:
    国家高技术研究发展(863)计划(2013AA102304);基本科技创新一般项目(QN2013056)

An improved sparse iterative closest point algorithm

ZHOU You,GENG Nan,ZHANG Zhi-yi   

  1. (College of Information Engineering,Northwest A & F University,Yangling 712100,China)
  • Received:2016-04-29 Revised:2016-06-07 Online:2017-10-25 Published:2017-10-25

摘要:

稀疏迭代最近点算法是针对含有噪声点的点云配准提出的,但它却存在对目标点云中的离群点敏感、运行效率低等问题。针
对这些问题,基于邻域信息的对应点对寻找方法提出了一种改进的稀疏迭代最近点算法。改进的稀疏迭代最近点算法首先使
用改进的基于PCA的点云初始配准调整两片点云的位置,而后使用基于邻域信息的对应点对寻找方法为精配准寻找对应点对,
针对对应点对,使用乘法器的交替方向法(ADMM)求得最优的变换矩阵。实验表明,对含离群点的斯坦福兔子、盆栽等点云来
说,改进后的算法能够处理目标点云含有离群点的情况,并且算法的配准速度平均提高了30%。

关键词: 点云配准, 邻域信息, 稀疏迭代最近点算法

Abstract:

The sparse iterative closest point algorithm for point cloud with noise points is sensitive to the outliers
contained in the target point cloud, and is inefficient. To solve the problems, we find the corresponding
point-pairs based on neighborhood information to improve the sparse iterative closest point algorithm. The
improved sparse iterative closest point algorithm firstly uses the improved registration based on the PCA to
adjust the position of the two point clouds, and then finds the corresponding point-pairs based on
neighborhood information. Finally we use the alternating direction method of multipliers (ADMM) to get the
optimal transformational matrix for corresponding point-pairs. Experiments on Stanford rabbit and potted
model show that the improved algorithm can handle the outliers contained in the target point cloud, and the
algorithm speed can be increased by 30%.

Key words: registration of point cloud, neighborhood information, sparse iterative closest point algorithm