刘梦兰1,2,刘斌1,2 ,彭智勇1,2
摘要:
专利检索与普通的文本检索有着极大的不同,专利文本包括权利声明、摘要、全文等不同部分,自然不能简单地将普通文本的检索方法应用到专利检索当中来。专利检索通常面临着召回率低下的问题,首先,由于专利文本具有极强的专业性,有着复杂的术语表达方式,用户输入的关键词通常无法明确捕捉到检索意图,导致检索结果不理想。其次,专利撰写时有意识地制造与众不同的词汇,导致相关专利无法被检索到。目前有很多的研究方法都旨在提高专利检索的召回率,但是仍然有许多问题有待解决,检索效果有待改善。提出了一个基于词向量的专利自动扩展查询方法,在词向量的基础上,构建一个关键词查询网络,通过稠密子图发现算法来寻找扩展词集合,提高扩展词的有效性。在CLEF-IP 2012数据集的基础上进行了充分的实验,实验结果表明,本文提出的算法能够保证扩展词集获取的灵活性和有效性,同时能进一步提高专利检索的召回率。